Example #1
0
 def get_ranks(self, times):
     ### If we don't have reputations yet, we return empty array. We start with empty dictionary if there are no reputations.
     if self.all_reputations == {}:
         result = {}
     else:
         ### If there were previous reputations, we look if date we are looking for has reputations. If so, we save them
         ### in result object.
         if times['date'] in list(self.all_reputations.keys()):
             result = dict(self.all_reputations[times['date']])
         else:
             ### If there are no reputations for that date, we work with empty dictionary.
             result = {}
     all_results = []
     ### In the end we only round up the ranks when we return them.
     for k in result.keys():
         all_results.append({'id': k, 'rank': my_round(result[k] * 100, 0)})
     #logging.debug("network get ranks: ",str(all_results))
     logging.info("network get ranks: {0}".format(all_results))
     ### Now, if we have spending, we only return those that are sellers;
     #if self.spendings>0:
     #    my_results = dict()
     #    for k in all_results.keys():
     #        if k in self.sellers:
     #            my_results[k] = all_results[k]
     #    all_results=my_results
     return (0, all_results)
Example #2
0
 def get_ranks_dict(self, times):
     if self.all_reputations == {}:
         result = {}
     else:
         if times['date'] in list(self.all_reputations.keys()):
             result = dict(self.all_reputations[times['date']])
         else:
             result = {}
     for k in result.keys():
         result[k] = my_round(result[k] * 100, 0)
         ### Everything is similar to get_ranks, but we only return result, not really 0 beside result.
     #logging.debug("network get ranks: " , str(result))
     logging.info("network get ranks: {0}".format(result))
     return (result)
Example #3
0
    def update_ranks(self, mydate):
        if not "rater_ranks_special" in dir(self):
            self.rater_ranks_special = dict()
        self.non_rounded_rep = dict()
        text = "period " + str(self.update_period)
        logging.debug(text)
        ### And then we iterate through functions. First we prepare arrays and basic computations.
        since = mydate - timedelta(days=self.update_period)
        if self.rating_bias:
            if 'rater_biases' in dir(self):
                pass
            else:
                self.rater_biases = dict()
                self.rater_biases[since] = dict()
        if self.predictiveness > 0:
            if 'predictive_data' in dir(self):
                pass
            else:
                self.predictive_data = dict()
                self.pred_values = dict()
                self.count_values = dict()

        self.current_ratings = []
        ### Sellect data which we will use.
        self.select_data(mydate)
        i = 0
        problem = False
        while i < len(self.current_ratings):
            ### If we do not have values, then we have a problem. Even if only one rating is missing,
            ### there is a problem.
            if (self.use_ratings == True
                    and (not 'value' in self.current_ratings[i].keys())):
                problem = True
            i += 1
        if problem:
            ### Well, if we have a problem, we just set ratings to false. Code will still work.
            logging.warning(
                "Ratings is set to True, but no ratings were given. Changing the setting to False"
            )
            self.use_ratings = False
        problem = False
        ### if we have some ratings, we can check;
        if len(self.current_ratings) > 0:
            ### If we have payments and downratings to true, there is a small error.
            if (self.current_ratings[0]['type'] == "payment"
                    and self.downrating == True):
                ### raising error message.
                warnings.warn(
                    "if we only have payments, we have no ratings. Therefore downratings cannot be True. Setting them to False"
                )
                self.downrating = False
        ### we set up arrays; this is the set of data where we have ratings, values, weights
        ### in predictable way, so we can iterate them later on.
        if self.rating_bias:
            if 'average_ratings' in dir(self):
                pass
            else:
                self.average_ratings = dict()
            self.rater_biases[mydate] = dict()
            array1, dates_array, to_array, rater_biases1, avgs = reputation_calc_p1(
                self.current_ratings, self.conservatism, self.precision,
                self.temporal_aggregation, False, self.logratings,
                self.downrating, self.weighting, self.rater_biases[since],
                self.average_ratings)
            self.average_ratings[mydate] = avgs
            self.rater_biases[mydate] = dict(rater_biases1)
        else:
            array1, dates_array, to_array, rater_biases1 = reputation_calc_p1(
                self.current_ratings, self.conservatism, self.precision,
                self.temporal_aggregation, False, self.logratings,
                self.downrating, self.weighting,
                None)  ### In this case, we don't need rater_biases
        ### Now we update the reputation. Here, old ranings are inseter and then new ones are calculated as output.

        self.reputation = update_reputation(self.reputation, array1,
                                            self.default, self.spendings)

        ### If we have spendings-based reputation, we go in the loop below.
        if self.spendings > 0:
            spendings_dict = spending_based(array1, dict(), self.logratings,
                                            self.precision, self.weighting)
            ### We normalize differential that is spendings-based.
            spendings_dict = normalized_differential(
                spendings_dict,
                normalizedRanks=self.fullnorm,
                our_default=self.default,
                spendings=self.spendings,
                log=self.logranks)

        ### Then we calculate differential the normal way.
        if self.predictiveness > 0:
            new_reputation, self.rater_ranks_special = calculate_new_reputation(
                logging=logging,
                new_array=array1,
                to_array=to_array,
                reputation=self.reputation,
                rating=self.use_ratings,
                precision=self.precision,
                previous_rep=self.rater_ranks_special,
                default=self.default,
                unrated=self.unrated,
                normalizedRanks=self.fullnorm,
                weighting=self.weighting,
                denomination=self.denomination,
                liquid=self.liquid,
                logratings=self.logratings,
                logranks=self.logranks,
                predictiveness=self.predictiveness,
                predictive_data=self.pred_values)
        else:
            new_reputation, self.rater_ranks_special = calculate_new_reputation(
                logging=logging,
                new_array=array1,
                to_array=to_array,
                reputation=self.reputation,
                rating=self.use_ratings,
                precision=self.precision,
                previous_rep=self.rater_ranks_special,
                default=self.default,
                unrated=self.unrated,
                normalizedRanks=self.fullnorm,
                weighting=self.weighting,
                denomination=self.denomination,
                liquid=self.liquid,
                logratings=self.logratings,
                logranks=self.logranks,
                predictiveness=self.predictiveness)
        ### And then we normalize the differential:
        new_reputation = normalized_differential(new_reputation,
                                                 normalizedRanks=self.fullnorm,
                                                 our_default=self.default,
                                                 spendings=self.spendings,
                                                 log=False)
        text = "Normalized differential: " + str(new_reputation)
        logging.debug(text)
        ### Again only starting this loop if we have spendings.
        ### we take data from date-update_period.
        ### For spendings-based system. We store all agents' reputations and then we only show reputations of
        ### sellers when get_ranks() is called. This is not in line with Java implementation, which only returns
        ### sellers. To circumvent that, we make an object in which we store only sellers and we then return only sellers.
        ### We still need all ranks, so they are still stored in self.all_reputations

        if "sellers" in dir(self):
            pass
        else:
            self.sellers = []

        for k in new_reputation.keys():
            if k not in self.sellers:
                self.sellers.append(k)
        if (self.spendings > 0 and self.predictiveness == 0):
            updated_differential = dict()
            unique_keys = list(new_reputation.keys())
            ###  each 'from' is added to unique_keys list. We add it to what is already in differential.
            for k in spendings_dict.keys():
                if not k in unique_keys:
                    unique_keys.append(k)
            for k in unique_keys:
                ### Then we have different cases of what happens depending on where we have a certain key.
                if (k in new_reputation.keys()) and (k
                                                     in spendings_dict.keys()):
                    ### Note, everything is already nomalized. The rest are just the equations to make sure everything is correct.
                    updated_differential[k] = (
                        self.ratings_param * new_reputation[k] +
                        self.spendings * spendings_dict[k]) / (
                            self.spendings + self.ratings_param)
                if (k in new_reputation.keys()) and (
                        k not in spendings_dict.keys()):
                    updated_differential[k] = (
                        self.ratings_param * new_reputation[k]) / (
                            self.spendings + self.ratings_param)
                if (k not in new_reputation.keys()) and (
                        k in spendings_dict.keys()):
                    updated_differential[k] = (
                        self.spendings * spendings_dict[k]) / (
                            self.spendings + self.ratings_param)
            ### Differential is then from both spendings and usual differential.
            new_reputation = updated_differential
        # THen we blend the reputation with differential.
        self.reputation = update_reputation_approach_d(self.first_occurance,
                                                       self.reputation,
                                                       new_reputation, since,
                                                       self.date, self.decayed,
                                                       self.conservatism)
        ### Apply normalizedRanks=True AKA "full normalization" to prevent negative ratings on "downrating"
        ### See line 360 in https://github.com/aigents/aigents-java/blob/master/src/main/java/net/webstructor/peer/Reputationer.java
        ### and line 94 in https://github.com/aigents/aigents-java/blob/master/src/main/java/net/webstructor/data/Summator.java
        ### Downratings seem to pass, so I assume this comment is resolved.
        text = "Blended differential with reputation: " + str(self.reputation)
        logging.debug(text)
        self.reputation = normalize_reputation(self.reputation, array1,
                                               self.unrated, self.default,
                                               self.decayed, self.conservatism,
                                               self.downrating)
        self.non_rounded_rep = dict(self.reputation)
        ### round reputations:
        for k in self.reputation.keys():
            self.reputation[k] = my_round(self.reputation[k],
                                          2)  # Make sure we use my_round.
            ### This might be changed in the future, but now rounding is done in order to be the same as in Java rs.
        ## We have all_reputations dictionary where we have all history of reputations with dates as keys.
        text = "Normalized reputation: " + str(self.reputation)
        logging.debug(text)
        self.all_reputations[mydate] = dict(self.reputation)
        if self.predictiveness > 0:
            avg_ind_rat_byperiod, self.count_values[
                mydate] = calculate_average_individual_rating_by_period(
                    array1, True)
            text = "Average individual rating by period: " + str(
                avg_ind_rat_byperiod)
            logging.debug(text)
            #self.predictive_data, ids = update_predictiveness_data(self.predictive_data,mydate,self.reputation,avg_ind_rat_byperiod,self.conservatism)
            self.predictive_data, ids = update_predictiveness_data(
                self.predictive_data, mydate, self.reputation,
                avg_ind_rat_byperiod, self.conservatism)
            self.calculate_indrating(ids, mydate)
            text = "Individual rating: " + str(
                self.predictive_data
            ) + ", and rating used for rater reputation: " + str(
                self.pred_values)
            logging.debug(text)
        return (0)