Example #1
0
    def setup_simulations(self, sim_id=0, file_to_load=''):
        """
            Setup current simulation
            :param sim_id: id of the current simulation
            :param file_to_load: NN file or experiences file to load directly
        """
        global_gym.record = self.sim_param.record  # record simulation log

        # Set ID of simulation
        global_gym.sim_id = sim_id

        debug_gym.xprint(color=PRINT_GREEN, msg="Begin simulation")
        debug_gym.xprint(msg="Setup")

        if file_to_load:
            self.file_to_load = file_to_load

        # Variables
        self.sim_count += 1
        self.running = True
        self.check_agents_nn_saved = [False] * self.num_agents

        # Record simulation logs
        self.simlogs_dir = self.sim_dir + 'sim_logs/'
        if global_gym.record:
            debug_gym.xprint(msg="Start recording".format(sim_id))

            # CSV event file
            suffix = self.env_name + '_sim' + str(
                global_gym.sim_id) + '_' + self.suffix
            filename = debug_gym.create_record_file(dir=self.simlogs_dir,
                                                    suffix=suffix)
            global_gym.simlogs_fo = open(filename, 'a')
            global_gym.simlogs_writer = csv.writer(global_gym.simlogs_fo)
            global_gym.simlogs_writer.writerow(
                debug_gym.header)  # write header of the record file

        # RPU save simulation logs
        if self.save_record_rpu:
            global_gym.record = True

            # CSV event file
            direc = os.path.dirname(file_to_load) + '/rpu_sim_logs/'

            nn_file = os.path.basename(file_to_load)  # filename
            episode = re.sub(r'.*_(?P<episode>\d+)ep_.*', r'\g<episode>',
                             nn_file)  # extract the episode number
            suffix = self.env_name + '_' + episode + 'ep' + '_rpu'

            filename = debug_gym.create_record_file(dir=direc, suffix=suffix)
            global_gym.simlogs_fo = open(filename, 'a')
            global_gym.simlogs_writer = csv.writer(global_gym.simlogs_fo)
            global_gym.simlogs_writer.writerow(
                debug_gym.header)  # write header of the record file

        # Create brain directory (NN files and experiences files)
        if self.save_model or self.save_mem or self.save_model_freq_ep or self.save_mem_freq_ep:
            self.brain_dir = self.sim_dir + 'brain_files/' + 'sim' + str(
                global_gym.sim_id) + '/'
            Util.create_dir(self.brain_dir)

        # Seed directory (seeds for randomstate)
        if self.save_seed and global_gym.record:
            self.seed_dir = self.sim_dir + 'seeds/'
            Util.create_dir(self.seed_dir)  # create the directory

        # Setup agents
        self.setup_agents()

        debug_gym.xprint(msg="Setup complete. Start simulation")
Example #2
0
    def __init__(self, sim_param=None):
        """
            :param sim_param: simulation parameters from command-line arguments
        """
        self.sim_param = sim_param

        # Load environment and agent config from file # assume path is cfg/<env>/<env>_<agent type>.  e.g. 'config/cartpole/cartpole_dqn'
        sys.path.append('config/' + sim_param.cfg.split('_')[0])
        config = importlib.import_module(sim_param.cfg)
        env = config.environment['env_name']
        self.problem_config = config

        print("########################")
        print("#### CL Testbed Gym ####")
        print("########################")
        print("Environment: {}\n".format(env))

        # -------------------- Simulation Parameters ----------------------
        self.render = sim_param.render  # render or not the visualization
        self.num_agents = sim_param.num_agents  # number of agents in the simulation
        self.training = sim_param.training  # decide whether to train agent or not
        self.random_agent = sim_param.random_agent  # random_agent: yes -> agent performs random action, else choose action
        self.exploration = sim_param.exploration  # agent has exploration phase
        self.collect_experiences = sim_param.collect_experiences  # agent collect experiences each timestep

        # Max number of episodes
        if sim_param.max_ep:
            self.max_ep = sim_param.max_ep
        else:
            self.max_ep = config.environment['max_ep']

        # Average score agent needs to reach to consider the problem solved
        if sim_param.solved_score:
            self.solved_score = sim_param.solved_score
        else:
            self.solved_score = config.environment['solved_score']

        self.load_model = sim_param.load_model
        self.load_all_weights = sim_param.load_all_weights
        self.load_h1h2_weights = sim_param.load_h1h2_weights
        self.load_h1_weights = sim_param.load_h1_weights
        self.load_h2_weights = sim_param.load_h2_weights
        self.load_out_weights = sim_param.load_out_weights
        self.load_h2out_weights = sim_param.load_h2out_weights
        self.load_h1out_weights = sim_param.load_h1out_weights
        self.load_mem = sim_param.load_mem
        self.load_mem_q_values = sim_param.load_mem_q_values

        self.file_to_load = sim_param.file_to_load

        self.save_model = sim_param.save_model
        self.save_mem = sim_param.save_mem
        self.save_model_freq_ep = sim_param.save_model_freq_ep
        self.save_mem_freq_ep = sim_param.save_mem_freq_ep  # TODO : not implemented, edit: not sure if really useful

        # Collaborative Learning
        self.collaboration = sim_param.collaboration
        self.cl_allweights = sim_param.cl_allweights
        self.cl_exp = sim_param.cl_exp
        self.exchange_freq = sim_param.exchange_freq

        # Directory for saving files
        self.suffix = ''
        self.sim_dir = ''
        self.simlogs_dir = ''
        self.brain_dir = ''
        self.seed_dir = ''
        self.env_name = env  # e.g. "CartPole_v0"

        # Directory for saving events, model files or memory files
        global_gym.record = sim_param.record
        if global_gym.record or sim_param.save_model or \
                sim_param.save_mem or sim_param.save_model_freq_ep or sim_param.save_mem_freq_ep:
            self.suffix = sim_param_gym.sim_suffix()
            self.sim_dir = sim_param_gym.sim_dir()
            Util.create_dir(self.sim_dir)  # create the directory
            print("Record directory: {}".format(sim_param_gym.sim_dir()))

        # Print event only in debug mode
        global_gym.debug = sim_param.debug

        self.running = True  # simulation running flag
        self.sim_count = 0  # count number of simulation

        # Create the agents
        self.agents = []
        for i in range(sim_param.num_agents):
            self.agents.append(
                AgentGym(render=sim_param.render,
                         id=i,
                         num_agents=self.num_agents,
                         config=config,
                         max_ep=self.max_ep,
                         solved_score=self.solved_score,
                         env_name=env,
                         collaboration=self.collaboration))
        for agent in self.agents:
            agent.agents = self.agents  # list of agents

        self.given_seeds = sim_param.seed  # give a seed directly
        print('seeds list', self.given_seeds)
        self.save_seed = sim_param.save_seed  # save the seeds in a txt file

        self.max_sim = sim_param.multi_sim  # max number of simulations

        self.save_record_rpu = sim_param.save_record_rpu  # record simulation logs when using Run in Parallel Universe (RPU) script
        self.seed_list = None  # used in RPU
        self.check_agents_nn_saved = None  # check at an episode if the agents have save their neural network
Example #3
0
    def __init__(self, sim_param=None):
        """
            :param sim_param: simulation parameters from command-line arguments
        """
        self.sim_param = sim_param

        # Load config from file # assume path is cfg/<env>/<env>_<agent type>.  e.g. 'config/racecircleleft/racecircleleft_dqn'
        sys.path.append('config/' + sim_param.cfg.split('_')[0])
        config = importlib.import_module(sim_param.cfg)
        env = config.environment['env_name']
        self.problem_config = config

        # 2nd agent (optional, depends on the experiment)
        env2 = None
        self.problem_config2 = None
        if sim_param.cfg2:
            sys.path.append('config/' + sim_param.cfg2.split('_')[0])
            config2 = importlib.import_module(sim_param.cfg2)
            env2 = config2.environment['env_name']
            self.problem_config2 = config2

        # 3rd agent (optional, depends on the experiment)
        env3 = None
        self.problem_config3 = None
        if sim_param.cfg3:
            sys.path.append('config/' + sim_param.cfg3.split('_')[0])
            config3 = importlib.import_module(sim_param.cfg3)
            env3 = config3.environment['env_name']
            self.problem_config3 = config3

        print("###########################")
        print("#### CL Testbed Race ######")
        print("###########################")
        # -------------------- Simulation Parameters ----------------------

        self.display = sim_param.display  # render or not the visualization
        self.can_handle_events = sim_param.display  # user can control the simulation (pause, stop) using  keyboard
        self.num_agents = sim_param.num_agents  # number of agents in the simulation

        self.training = sim_param.training  # decide whether to train agent or not
        self.random_agent = sim_param.random_agent  # random_agent: yes -> agent performs random action, else choose action
        self.exploration = sim_param.exploration  # agent has exploration phase
        self.collect_experiences = sim_param.collect_experiences  # agent collect experiences each timestep

        # Max number of episodes
        if sim_param.max_ep:
            self.max_ep = sim_param.max_ep
        else:
            self.max_ep = config.environment['max_ep']

        # Average timestep agent needs to reach to consider the problem solved
        if sim_param.solved_timesteps:
            self.solved_timesteps = sim_param.solved_timesteps
        else:
            self.solved_timesteps = config.environment['solved_timesteps']

        self.load_model = sim_param.load_model
        self.load_all_weights = sim_param.load_all_weights
        self.load_h1h2_weights = sim_param.load_h1h2_weights
        self.load_h1_weights = sim_param.load_h1_weights
        self.load_h2_weights = sim_param.load_h2_weights
        self.load_out_weights = sim_param.load_out_weights
        self.load_h2out_weights = sim_param.load_h2out_weights
        self.load_h1out_weights = sim_param.load_h1out_weights
        self.load_mem = sim_param.load_mem
        self.load_mem2 = sim_param.load_mem2

        self.file_to_load = sim_param.file_to_load
        self.file_to_load2 = sim_param.file_to_load2

        self.save_model = sim_param.save_model
        self.save_mem = sim_param.save_mem
        self.save_model_freq_ep = sim_param.save_model_freq_ep
        self.save_mem_freq_ep = sim_param.save_mem_freq_ep  # TODO : not implemented, edit: not sure if really useful

        # Combining experiences
        self.give_exp = sim_param.give_exp
        self.tts = sim_param.tts

        # Directory for saving files
        self.suffix = ''
        self.sim_dir = ''
        self.simlogs_dir = ''
        self.brain_dir = ''
        self.seed_dir = ''
        self.env_name = env  # e.g. "RaceCircleLeft"
        self.env_name2 = None
        self.env_name3 = None
        if sim_param.cfg2:
            self.env_name2 = env2
        if sim_param.cfg3:
            self.env_name3 = env3

        # Directory for saving events, model files or memory files
        global_race.record = sim_param.record
        if global_race.record or sim_param.save_model or \
                sim_param.save_mem or sim_param.save_model_freq_ep or sim_param.save_mem_freq_ep:
            self.suffix = sim_param_race.sim_suffix()
            self.sim_dir = sim_param_race.sim_dir()
            Util.create_dir(self.sim_dir)  # create the directory
            print("\nRecord directory: {}".format(sim_param_race.sim_dir()))

        # Print event only in debug mode
        global_race.debug = sim_param.debug

        # Simulation running flag
        self.running = True
        self.sim_count = 0  # count number of simulation
        self.pause = False

        # Create the agents
        self.agents = []

        if sim_param.cfg2:
            self.num_agents += 1
        if sim_param.cfg3:
            self.num_agents += 1

        # for i in range(sim_param.num_agents):
        self.agents.append(
            AgentRace(display=sim_param.display,
                      id=0,
                      num_agents=self.num_agents,
                      config=config,
                      max_ep=self.max_ep,
                      solved_timesteps=self.solved_timesteps,
                      env_name=env,
                      manual=sim_param.manual))
        if sim_param.cfg2:
            agent2 = AgentRace(display=sim_param.display,
                               id=1,
                               num_agents=self.num_agents,
                               config=self.problem_config2,
                               max_ep=self.max_ep,
                               env_name=env2,
                               solved_timesteps=self.solved_timesteps,
                               manual=sim_param.manual,
                               give_exp=self.give_exp,
                               tts=self.tts)
            self.agents.append(agent2)
        if sim_param.cfg3:
            agent3 = AgentRace(display=sim_param.display,
                               id=2,
                               num_agents=self.num_agents,
                               config=self.problem_config3,
                               max_ep=self.max_ep,
                               env_name=env3,
                               solved_timesteps=self.solved_timesteps,
                               manual=sim_param.manual,
                               give_exp=self.give_exp,
                               tts=self.tts)
            self.agents.append(agent3)

        # Add reference to others agents to each agent
        for agent in self.agents:
            agent.agents = self.agents

        self.given_seeds = sim_param.seed
        print('seeds', self.given_seeds)
        self.max_sim = sim_param.multi_sim  # max number of simulations
        self.save_seed = sim_param.save_seed  # save the seeds in a txt file

        self.save_record_rpu = sim_param.save_record_rpu  # record simulation logs when using Run in Parallel Universe (RPU) script
        self.seed_list = None  # used in RPU
        self.check_agents_nn_saved = None  # check at an episode if the agents have save their neural network