Example #1
0
def imagenet_input(is_training):
    """Data reader for imagenet.

  Reads in imagenet data and performs pre-processing on the images.

  Args:
     is_training: bool specifying if train or validation dataset is needed.
  Returns:
     A batch of images and labels.
  """
    if is_training:
        dataset = dataset_factory.get_dataset('imagenet', 'train',
                                              FLAGS.dataset_dir)
    else:
        dataset = dataset_factory.get_dataset('imagenet', 'validation',
                                              FLAGS.dataset_dir)

    provider = slim.dataset_data_provider.DatasetDataProvider(
        dataset,
        shuffle=is_training,
        common_queue_capacity=2 * FLAGS.batch_size,
        common_queue_min=FLAGS.batch_size)
    [image, label] = provider.get(['image', 'label'])

    image_preprocessing_fn = preprocessing_factory.get_preprocessing(
        'mobilenet_v1', is_training=is_training)

    image = image_preprocessing_fn(image, FLAGS.image_size, FLAGS.image_size)

    images, labels = tf.train.batch([image, label],
                                    batch_size=FLAGS.batch_size,
                                    num_threads=4,
                                    capacity=5 * FLAGS.batch_size)
    labels = slim.one_hot_encoding(labels, FLAGS.num_classes)
    return images, labels
Example #2
0
def provide_data(batch_size,
                 dataset_dir,
                 dataset_name='cifar10',
                 split_name='train',
                 one_hot=True):
    """Provides batches of CIFAR data.

  Args:
    batch_size: The number of images in each batch.
    dataset_dir: The directory where the CIFAR10 data can be found. If `None`,
      use default.
    dataset_name: Name of the dataset.
    split_name: Should be either 'train' or 'test'.
    one_hot: Output one hot vector instead of int32 label.

  Returns:
    images: A `Tensor` of size [batch_size, 32, 32, 3]. Output pixel values are
      in [-1, 1].
    labels: Either (1) one_hot_labels if `one_hot` is `True`
            A `Tensor` of size [batch_size, num_classes], where each row has a
            single element set to one and the rest set to zeros.
            Or (2) labels if `one_hot` is `False`
            A `Tensor` of size [batch_size], holding the labels as integers.
    num_samples: The number of total samples in the dataset.
    num_classes: The number of classes in the dataset.

  Raises:
    ValueError: if the split_name is not either 'train' or 'test'.
  """
    dataset = datasets.get_dataset(dataset_name,
                                   split_name,
                                   dataset_dir=dataset_dir)
    provider = slim.dataset_data_provider.DatasetDataProvider(
        dataset,
        common_queue_capacity=5 * batch_size,
        common_queue_min=batch_size,
        shuffle=(split_name == 'train'))
    [image, label] = provider.get(['image', 'label'])

    # Preprocess the images.
    image = (tf.to_float(image) - 128.0) / 128.0

    # Creates a QueueRunner for the pre-fetching operation.
    images, labels = tf.train.batch([image, label],
                                    batch_size=batch_size,
                                    num_threads=32,
                                    capacity=5 * batch_size)

    labels = tf.reshape(labels, [-1])

    if one_hot:
        labels = tf.one_hot(labels, dataset.num_classes)

    return images, labels, dataset.num_samples, dataset.num_classes
Example #3
0
def provide_data(dataset_name='cifar10',
                 split_name='train',
                 dataset_dir='',
                 batch_size=32,
                 shuffle=True,
                 num_threads=1,
                 patch_height=32,
                 patch_width=32,
                 colors=3):
    """Provides a batch of image data from predefined dataset.

  Args:
    dataset_name: A string of dataset name. Defaults to 'cifar10'.
    split_name: Either 'train' or 'validation'. Defaults to 'train'.
    dataset_dir: The directory where the data can be found. If `None`, use
      default.
    batch_size: The number of images in each minibatch. Defaults to 32.
    shuffle: Whether to shuffle the read images. Defaults to True.
    num_threads: Number of prefetching threads. Defaults to 1.
    patch_height: A Python integer. The read images height. Defaults to 32.
    patch_width: A Python integer. The read images width. Defaults to 32.
    colors: Number of channels. Defaults to 3.

  Returns:
    A float `Tensor`s with shape [batch_size, patch_height, patch_width, colors]
    representing a batch of images.
  """
    dataset = datasets.get_dataset(dataset_name,
                                   split_name,
                                   dataset_dir=dataset_dir)
    provider = tf.contrib.slim.dataset_data_provider.DatasetDataProvider(
        dataset,
        num_readers=1,
        common_queue_capacity=5 * batch_size,
        common_queue_min=batch_size,
        shuffle=shuffle)
    return batch_images(image=normalize_image(provider.get(['image'])[0]),
                        patch_height=patch_height,
                        patch_width=patch_width,
                        colors=colors,
                        batch_size=batch_size,
                        shuffle=shuffle,
                        num_threads=num_threads)
Example #4
0
def provide_data(split_name, batch_size, dataset_dir, num_readers=1,
                 num_threads=1):
    """Provides batches of MNIST digits.

  Args:
    split_name: Either 'train' or 'test'.
    batch_size: The number of images in each batch.
    dataset_dir: The directory where the MNIST data can be found.
    num_readers: Number of dataset readers.
    num_threads: Number of prefetching threads.

  Returns:
    images: A `Tensor` of size [batch_size, 28, 28, 1]
    one_hot_labels: A `Tensor` of size [batch_size, mnist.NUM_CLASSES], where
      each row has a single element set to one and the rest set to zeros.
    num_samples: The number of total samples in the dataset.

  Raises:
    ValueError: If `split_name` is not either 'train' or 'test'.
  """
    dataset = datasets.get_dataset('mnist', split_name, dataset_dir=dataset_dir)
    provider = slim.dataset_data_provider.DatasetDataProvider(
        dataset,
        num_readers=num_readers,
        common_queue_capacity=2 * batch_size,
        common_queue_min=batch_size,
        shuffle=(split_name == 'train'))
    [image, label] = provider.get(['image', 'label'])

    # Preprocess the images.
    image = (tf.to_float(image) - 128.0) / 128.0

    # Creates a QueueRunner for the pre-fetching operation.
    images, labels = tf.train.batch(
        [image, label],
        batch_size=batch_size,
        num_threads=num_threads,
        capacity=5 * batch_size)

    one_hot_labels = tf.one_hot(labels, dataset.num_classes)
    return images, one_hot_labels, dataset.num_samples
Example #5
0
def main(_):
    if not FLAGS.output_file:
        raise ValueError('You must supply the path to save to with --output_file')
    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default() as graph:
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train',
                                              FLAGS.dataset_dir)
        network_fn = nets_factory.get_network_fn(
            FLAGS.model_name,
            num_classes=(dataset.num_classes - FLAGS.labels_offset),
            is_training=FLAGS.is_training)
        image_size = FLAGS.image_size or network_fn.default_image_size
        placeholder = tf.placeholder(name='input', dtype=tf.float32,
                                     shape=[FLAGS.batch_size, image_size,
                                            image_size, 3])
        network_fn(placeholder)

        if FLAGS.quantize:
            tf.contrib.quantize.create_eval_graph()

        graph_def = graph.as_graph_def()
        with gfile.GFile(FLAGS.output_file, 'wb') as f:
            f.write(graph_def.SerializeToString())
Example #6
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        #######################
        # Config model_deploy #
        #######################
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=FLAGS.num_clones,
            clone_on_cpu=FLAGS.clone_on_cpu,
            replica_id=FLAGS.task,
            num_replicas=FLAGS.worker_replicas,
            num_ps_tasks=FLAGS.num_ps_tasks)

        # Create global_step
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        ######################
        # Select the dataset #
        ######################
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        ######################
        # Select the network #
        ######################
        network_fn = nets_factory.get_network_fn(
            FLAGS.model_name,
            num_classes=(dataset.num_classes - FLAGS.labels_offset),
            weight_decay=FLAGS.weight_decay,
            is_training=True)

        #####################################
        # Select the preprocessing function #
        #####################################
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        ##############################################################
        # Create a dataset provider that loads data from the dataset #
        ##############################################################
        with tf.device(deploy_config.inputs_device()):
            provider = slim.dataset_data_provider.DatasetDataProvider(
                dataset,
                num_readers=FLAGS.num_readers,
                common_queue_capacity=20 * FLAGS.batch_size,
                common_queue_min=10 * FLAGS.batch_size)
            [image, label] = provider.get(['image', 'label'])
            label -= FLAGS.labels_offset

            train_image_size = FLAGS.train_image_size or network_fn.default_image_size

            image = image_preprocessing_fn(image, train_image_size,
                                           train_image_size)

            images, labels = tf.train.batch(
                [image, label],
                batch_size=FLAGS.batch_size,
                num_threads=FLAGS.num_preprocessing_threads,
                capacity=5 * FLAGS.batch_size)
            labels = slim.one_hot_encoding(
                labels, dataset.num_classes - FLAGS.labels_offset)
            batch_queue = slim.prefetch_queue.prefetch_queue(
                [images, labels], capacity=2 * deploy_config.num_clones)

        ####################
        # Define the model #
        ####################
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple clones of network_fn."""
            imgs, ls = batch_queue.dequeue()
            logits, end_points = network_fn(imgs)

            #############################
            # Specify the loss function #
            #############################
            if 'AuxLogits' in end_points:
                slim.losses.softmax_cross_entropy(
                    end_points['AuxLogits'],
                    ls,
                    label_smoothing=FLAGS.label_smoothing,
                    weights=0.4,
                    scope='aux_loss')
            slim.losses.softmax_cross_entropy(
                logits, ls, label_smoothing=FLAGS.label_smoothing, weights=1.0)
            return end_points

        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        clones = model_deploy.create_clones(deploy_config, clone_fn,
                                            [batch_queue])
        first_clone_scope = deploy_config.clone_scope(0)
        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by network_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        # Add summaries for end_points.
        end_points = clones[0].outputs
        for end_point in end_points:
            x = end_points[end_point]
            summaries.add(tf.summary.histogram('activations/' + end_point, x))
            summaries.add(
                tf.summary.scalar('sparsity/' + end_point,
                                  tf.nn.zero_fraction(x)))

        # Add summaries for losses.
        for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
            summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        #################################
        # Configure the moving averages #
        #################################
        if FLAGS.moving_average_decay:
            moving_average_variables = slim.get_model_variables()
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, global_step)
        else:
            moving_average_variables, variable_averages = None, None

        if FLAGS.quantize_delay >= 0:
            tf.contrib.quantize.create_training_graph(
                quant_delay=FLAGS.quantize_delay)

        #########################################
        # Configure the optimization procedure. #
        #########################################
        with tf.device(deploy_config.optimizer_device()):
            learning_rate = _configure_learning_rate(dataset.num_samples,
                                                     global_step)
            optimizer = _configure_optimizer(learning_rate)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        if FLAGS.sync_replicas:
            # If sync_replicas is enabled, the averaging will be done in the chief
            # queue runner.
            optimizer = tf.train.SyncReplicasOptimizer(
                opt=optimizer,
                replicas_to_aggregate=FLAGS.replicas_to_aggregate,
                total_num_replicas=FLAGS.worker_replicas,
                variable_averages=variable_averages,
                variables_to_average=moving_average_variables)
        elif FLAGS.moving_average_decay:
            # Update ops executed locally by trainer.
            update_ops.append(
                variable_averages.apply(moving_average_variables))

        # Variables to train.
        variables_to_train = _get_variables_to_train()

        #  and returns a train_tensor and summary_op
        total_loss, clones_gradients = model_deploy.optimize_clones(
            clones, optimizer, var_list=variables_to_train)
        # Add total_loss to summary.
        summaries.add(tf.summary.scalar('total_loss', total_loss))

        # Create gradient updates.
        grad_updates = optimizer.apply_gradients(clones_gradients,
                                                 global_step=global_step)
        update_ops.append(grad_updates)

        update_op = tf.group(*update_ops)
        with tf.control_dependencies([update_op]):
            train_tensor = tf.identity(total_loss, name='train_op')

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        ###########################
        # Kicks off the training. #
        ###########################
        slim.learning.train(
            train_tensor,
            logdir=FLAGS.train_dir,
            master=FLAGS.master,
            is_chief=(FLAGS.task == 0),
            init_fn=_get_init_fn(),
            summary_op=summary_op,
            number_of_steps=FLAGS.max_number_of_steps,
            log_every_n_steps=FLAGS.log_every_n_steps,
            save_summaries_secs=FLAGS.save_summaries_secs,
            save_interval_secs=FLAGS.save_interval_secs,
            sync_optimizer=optimizer if FLAGS.sync_replicas else None)
Example #7
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        tf_global_step = slim.get_or_create_global_step()

        ######################
        # Select the dataset #
        ######################
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        ####################
        # Select the model #
        ####################
        network_fn = nets_factory.get_network_fn(
            FLAGS.model_name,
            num_classes=(dataset.num_classes - FLAGS.labels_offset),
            is_training=False)

        ##############################################################
        # Create a dataset provider that loads data from the dataset #
        ##############################################################
        provider = slim.dataset_data_provider.DatasetDataProvider(
            dataset,
            shuffle=False,
            common_queue_capacity=2 * FLAGS.batch_size,
            common_queue_min=FLAGS.batch_size)
        [image, label] = provider.get(['image', 'label'])
        label -= FLAGS.labels_offset

        #####################################
        # Select the preprocessing function #
        #####################################
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=False)

        eval_image_size = FLAGS.eval_image_size or network_fn.default_image_size

        image = image_preprocessing_fn(image, eval_image_size, eval_image_size)

        images, labels = tf.train.batch(
            [image, label],
            batch_size=FLAGS.batch_size,
            num_threads=FLAGS.num_preprocessing_threads,
            capacity=5 * FLAGS.batch_size)

        ####################
        # Define the model #
        ####################
        logits, _ = network_fn(images)

        if FLAGS.quantize:
            tf.contrib.quantize.create_eval_graph()

        if FLAGS.moving_average_decay:
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, tf_global_step)
            variables_to_restore = variable_averages.variables_to_restore(
                slim.get_model_variables())
            variables_to_restore[tf_global_step.op.name] = tf_global_step
        else:
            variables_to_restore = slim.get_variables_to_restore()

        predictions = tf.argmax(logits, 1)
        labels = tf.squeeze(labels)

        # Define the metrics:
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
            'Accuracy':
            slim.metrics.streaming_accuracy(predictions, labels),
            'Recall_5':
            slim.metrics.streaming_recall_at_k(logits, labels, 5),
        })

        # Print the summaries to screen.
        for name, value in names_to_values.items():
            summary_name = 'eval/%s' % name
            op = tf.summary.scalar(summary_name, value, collections=[])
            op = tf.Print(op, [value], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # TODO(sguada) use num_epochs=1
        if FLAGS.max_num_batches:
            num_batches = FLAGS.max_num_batches
        else:
            # This ensures that we make a single pass over all of the data.
            num_batches = math.ceil(dataset.num_samples /
                                    float(FLAGS.batch_size))

        if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
            checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
        else:
            checkpoint_path = FLAGS.checkpoint_path

        tf.logging.info('Evaluating %s' % checkpoint_path)

        slim.evaluation.evaluate_once(
            master=FLAGS.master,
            checkpoint_path=checkpoint_path,
            logdir=FLAGS.eval_dir,
            num_evals=num_batches,
            eval_op=list(names_to_updates.values()),
            variables_to_restore=variables_to_restore)