def getStatisticDataForSampleFreq( projData: ProjectData, site: str, sampleFreq: float, stat: str, declevel: int = 0, **kwargs ) -> List[StatisticData]: """Get the statistic data (for a particular decimation level) for all measurements in a site with sampling frequency sampleFreq Parameters ---------- projData : ProjectData Project instance site : str The site for which to get the statistic data sampleFreq : float The sampling frequency stat : str The statistic for which to get the measurement declevel : int, optional The decimation level to read in. Default is 0. specdir : str, optional The spectra directory Returns ------- Dict[str, StatisticData] A statistic data object """ from resistics.statistics.io import StatisticIO options = {} options["specdir"] = projData.config.configParams["Spectra"]["specdir"] options = parseKeywords(options, kwargs) siteData = projData.getSiteData(site) if not siteData: projectError("Unable to find site {} in project".format(site), quitrun=True) # load the statistic data statData: Dict[str, StatisticData] = {} statIO = StatisticIO() measurements = siteData.getMeasurements(sampleFreq) for meas in measurements: statIO.setDatapath( os.path.join(siteData.getMeasurementStatPath(meas), options["specdir"]) ) # make sure some data was found chk = statIO.read(stat, declevel) if chk is not None: statData[meas] = statIO.read(stat, declevel) else: projectWarning( "No {} data found for site {} and measurement {}".format( stat, site, meas ) ) return statData
def getTransferFunctionData(projData: ProjectData, site: str, sampleFreq: float, **kwargs) -> TransferFunctionData: """Get transfer function data Parameters ---------- projData : projecData The project data site : str Site to get the transfer functiond data for sampleFreq : int, float The sampling frequency for which to get the transfer function data specdir : str, optional The spectra directories used postpend : str, optional The postpend on the transfer function files """ from resistics.transfunc.io import TransferFunctionReader options: Dict = dict() options["specdir"]: str = projData.config.configParams["Spectra"][ "specdir"] options["postpend"]: str = "" options = parseKeywords(options, kwargs) # deal with the postpend if options["postpend"] != "": postpend = "_{}".format(options["postpend"]) else: postpend = options["postpend"] siteData = projData.getSiteData(site) sampleFreqStr = fileFormatSampleFreq(sampleFreq) path = os.path.join( siteData.transFuncPath, "{:s}".format(sampleFreqStr), "{}_fs{:s}_{}{}".format(site, sampleFreqStr, options["specdir"], postpend), ) # check path if not checkFilepath(path): projectWarning("No transfer function file with name {}".format(path)) return False projectText( "Reading transfer function for site {}, sample frequency {}, file {}". format(site, sampleFreq, path)) tfReader = TransferFunctionReader(path) tfReader.printInfo() return tfReader.tfData
def getSpecReader(projData: ProjectData, site: str, meas: str, **kwargs) -> Union[SpectrumReader, None]: """Get the spectrum reader for a measurement Parameters ---------- site : str Site for which to get the spectra reader meas : str The measurement options : Dict Options in a dictionary declevel : int, optional Decimation level for which to get data specdir : str, optional String that specifies spectra directory for the measurement Returns ------- SpectrumReader The SpectrumReader object or None if data does not exist """ options = {} options["declevel"]: int = 0 options["specdir"]: str = projData.config.configParams["Spectra"][ "specdir"] options = parseKeywords(options, kwargs) siteData = projData.getSiteData(site) measurements = siteData.getMeasurements() if meas not in measurements: projectError("Measurement directory {} not found".format(meas), quitrun=True) # create the spectrum reader specReader = SpectrumReader( os.path.join(siteData.getMeasurementSpecPath(meas), options["specdir"])) specReader.printInfo() # open the spectra file for the current decimation level if it exists check = specReader.openBinaryForReading("spectra", options["declevel"]) if not check: projectWarning("Spectra file does not exist at level {}".format( options["declevel"])) return None return specReader
def viewSpectraStack(projData: ProjectData, site: str, meas: str, **kwargs) -> Union[Figure, None]: """View spectra stacks for a measurement Parameters ---------- projData : projecData The project data site : str The site to view meas: str The measurement of the site to view chans : List[str], optional Channels to plot declevel : int, optional Decimation level to plot numstacks : int, optional The number of windows to stack coherences : List[List[str]], optional A list of coherences to add, specified as [["Ex", "Hy"], ["Ey", "Hx"]] specdir : str, optional String that specifies spectra directory for the measurement show : bool, optional Show the spectra plot save : bool, optional Save the plot to the images directory plotoptions : Dict, optional Dictionary of plot options Returns ------- matplotlib.pyplot.figure or None A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, then None is returned. """ from resistics.common.plot import savePlot, plotOptionsSpec, colorbarMultiline options = {} options["chans"] = [] options["declevel"] = 0 options["numstacks"] = 10 options["coherences"] = [] options["specdir"] = projData.config.configParams["Spectra"]["specdir"] options["show"] = True options["save"] = False options["plotoptions"] = plotOptionsSpec() options = parseKeywords(options, kwargs) projectText("Plotting spectra stack for measurement {} and site {}".format( meas, site)) specReader = getSpecReader(projData, site, meas, **options) if specReader is None: return None # channels dataChans = specReader.getChannels() if len(options["chans"]) > 0: dataChans = options["chans"] numChans = len(dataChans) # get windows numWindows = specReader.getNumWindows() sampleFreqDec = specReader.getSampleFreq() f = specReader.getFrequencyArray() # calculate num of windows to stack in each set stackSize = int(np.floor(1.0 * numWindows / options["numstacks"])) if stackSize == 0: projectWarning("Too few windows for number of stacks {}".format( options["numstacks"])) options["numstacks"] = numWindows stackSize = 1 projectWarning("Number of stacks changed to {}".format( options["numstacks"])) # calculate number of rows - in case interested in coherences too nrows = (2 if len(options["coherences"]) == 0 else 2 + np.ceil(1.0 * len(options["coherences"]) / numChans)) # setup the figure plotfonts = options["plotoptions"]["plotfonts"] cmap = colorbarMultiline() fig = plt.figure(figsize=options["plotoptions"]["figsize"]) st = fig.suptitle( "Spectra stack, fs = {:.6f} [Hz], decimation level = {:2d}, windows in each set = {:d}" .format(sampleFreqDec, options["declevel"], stackSize), fontsize=plotfonts["suptitle"], ) st.set_y(0.98) # do the stacking for iP in range(0, options["numstacks"]): stackStart = iP * stackSize stackStop = min(stackStart + stackSize, numWindows) color = cmap(iP / options["numstacks"]) # dictionaries to hold data for this section stackedData = {} ampData = {} phaseData = {} powerData = {} # assign initial zeros for c in dataChans: stackedData[c] = np.zeros(shape=(specReader.getDataSize()), dtype="complex") ampData[c] = np.zeros(shape=(specReader.getDataSize()), dtype="complex") phaseData[c] = np.zeros(shape=(specReader.getDataSize()), dtype="complex") for c2 in dataChans: powerData[c + c2] = np.zeros(shape=(specReader.getDataSize()), dtype="complex") # now stack the data and create nice plots for iW in range(stackStart, stackStop): winData = specReader.readBinaryWindowLocal(iW) for c in dataChans: stackedData[c] += winData.data[c] ampData[c] += np.absolute(winData.data[c]) phaseData[c] += np.angle(winData.data[c]) * (180.0 / np.pi) # get coherency data for c2 in dataChans: powerData[c + c2] += winData.data[c] * np.conjugate( winData.data[c2]) if iW == stackStart: startTime = winData.startTime if iW == stackStop - 1: stopTime = winData.stopTime # scale powers and stacks ampLim = options["plotoptions"]["amplim"] for idx, c in enumerate(dataChans): stackedData[c] = stackedData[c] / (stackStop - stackStart) ampData[c] = ampData[c] / (stackStop - stackStart) phaseData[c] = phaseData[c] / (stackStop - stackStart) for c2 in dataChans: # normalisation powerData[c + c2] = 2 * powerData[c + c2] / (stackStop - stackStart) # normalisation powerData[c + c2][[0, -1]] = powerData[c + c2][[0, -1]] / 2 # plot ax1 = plt.subplot(nrows, numChans, idx + 1) plt.title("Amplitude {}".format(c), fontsize=plotfonts["title"]) h = ax1.semilogy( f, ampData[c], color=color, label="{} to {}".format( startTime.strftime("%m-%d %H:%M:%S"), stopTime.strftime("%m-%d %H:%M:%S"), ), ) if len(ampLim) == 2: ax1.set_ylim(ampLim) else: ax1.set_ylim(0.01, 1000) ax1.set_xlim(0, sampleFreqDec / 2.0) if isMagnetic(c): ax1.set_ylabel("Amplitude [nT]", fontsize=plotfonts["axisLabel"]) else: ax1.set_ylabel("Amplitude [mV/km]", fontsize=plotfonts["axisLabel"]) ax1.set_xlabel("Frequency [Hz]", fontsize=plotfonts["axisLabel"]) plt.grid(True) # set tick sizes for label in ax1.get_xticklabels() + ax1.get_yticklabels(): label.set_fontsize(plotfonts["axisTicks"]) # plot phase ax2 = plt.subplot(nrows, numChans, numChans + idx + 1) plt.title("Phase {}".format(c), fontsize=plotfonts["title"]) ax2.plot( f, phaseData[c], color=color, label="{} to {}".format( startTime.strftime("%m-%d %H:%M:%S"), stopTime.strftime("%m-%d %H:%M:%S"), ), ) ax2.set_ylim(-180, 180) ax2.set_xlim(0, sampleFreqDec / 2.0) ax2.set_ylabel("Phase [degrees]", fontsize=plotfonts["axisLabel"]) ax2.set_xlabel("Frequency [Hz]", fontsize=plotfonts["axisLabel"]) plt.grid(True) # set tick sizes for label in ax2.get_xticklabels() + ax2.get_yticklabels(): label.set_fontsize(plotfonts["axisTicks"]) # plot coherences for idx, coh in enumerate(options["coherences"]): c = coh[0] c2 = coh[1] cohNom = np.power(np.absolute(powerData[c + c2]), 2) cohDenom = powerData[c + c] * powerData[c2 + c2] coherence = cohNom / cohDenom ax = plt.subplot(nrows, numChans, 2 * numChans + idx + 1) plt.title("Coherence {} - {}".format(c, c2), fontsize=plotfonts["title"]) ax.plot( f, coherence, color=color, label="{} to {}".format( startTime.strftime("%m-%d %H:%M:%S"), stopTime.strftime("%m-%d %H:%M:%S"), ), ) ax.set_ylim(0, 1.1) ax.set_xlim(0, sampleFreqDec / 2) ax.set_ylabel("Coherence", fontsize=plotfonts["axisLabel"]) ax.set_xlabel("Frequency [Hz]", fontsize=plotfonts["axisLabel"]) plt.grid(True) # set tick sizes for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(plotfonts["axisTicks"]) # fig legend and layout ax = plt.gca() h, l = ax.get_legend_handles_labels() fig.tight_layout(rect=[0.01, 0.01, 0.98, 0.81]) # legend legax = plt.axes(position=[0.01, 0.82, 0.98, 0.12], in_layout=False) plt.tick_params(left=False, labelleft=False, bottom=False, labelbottom=False) plt.box(False) legax.legend(h, l, ncol=4, loc="upper center", fontsize=plotfonts["legend"]) # plot show and save if options["save"]: impath = projData.imagePath filename = "spectraStack_{}_{}_dec{}_{}".format( site, meas, options["declevel"], options["specdir"]) savename = savePlot(impath, filename, fig) projectText("Image saved to file {}".format(savename)) if options["show"]: plt.show(block=options["plotoptions"]["block"]) if not options["show"] and options["save"]: plt.close(fig) return None return fig
def viewStatisticDensityplot( projData: ProjectData, site: str, sampleFreq: Union[int, float], stat: str, crossplots: List[List[str]], **kwargs ) -> Union[Figure, None]: """View statistic data as a density plot for a single sampling frequency of a site Parameters ---------- projData : ProjectData A project instance site : str The site for which to plot statistics stat : str The statistic to plot sampleFreq : float The sampling frequency for which to plot statistics crossplots : List[List[str]] The statistic element pairs to crossplot declevel : int The decimation level to plot eFreqI : int The evaluation frequency index specdir : str The spectra directory maskname : str Mask name xlim : List, optional Limits for the x axis ylim : List, optional Limits for the y axis maxcols : int The maximum number of columns in the plots show : bool, optional Show the spectra plot save : bool, optional Save the plot to the images directory plotoptions : Dict, optional Dictionary of plot options Returns ------- matplotlib.pyplot.figure or None A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, None. """ from resistics.common.plot import ( savePlot, plotOptionsSpec, getPlotRowsAndCols, colorbar2dSpectra, ) options = {} options["declevel"] = 0 options["eFreqI"] = 0 options["specdir"] = projData.config.configParams["Spectra"]["specdir"] options["maskname"] = "" options["xlim"] = [] options["ylim"] = [] options["maxcols"] = 2 options["show"] = True options["save"] = False options["plotoptions"] = plotOptionsSpec() options = parseKeywords(options, kwargs) projectText( "Plotting density plot for statistic {}, site {} and sampling frequency {}".format( stat, site, sampleFreq ) ) statData = getStatisticDataForSampleFreq( projData, site, sampleFreq, stat, declevel=options["declevel"], specdir=options["specdir"], ) statMeas = list(statData.keys()) if len(statMeas) == 0: projectWarning( "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format( site, sampleFreq, stat, options["declevel"] ) ) return None # get the evaluation frequency eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]] # get the mask data maskWindows = [] if options["maskname"] != "": maskData = getMaskData(projData, site, options["maskname"], sampleFreq) maskWindows = maskData.getMaskWindowsFreq( options["declevel"], options["eFreqI"] ) # plot information nrows, ncols = getPlotRowsAndCols(options["maxcols"], len(crossplots)) plotfonts = options["plotoptions"]["plotfonts"] fig = plt.figure(figsize=options["plotoptions"]["figsize"]) # suptitle st = fig.suptitle( "{} density plots for {}, sampling frequency {} Hz,\ndecimation level {} and evaluation frequency {} Hz".format( stat, site, sampleFreq, options["declevel"], eFreq ), fontsize=plotfonts["suptitle"], ) st.set_y(0.98) # now plot the data for idx, cplot in enumerate(crossplots): ax = plt.subplot(nrows, ncols, idx + 1) plt.title("Crossplot {}".format(cplot), fontsize=plotfonts["title"]) plotAll1 = [] plotAll2 = [] for meas in statMeas: stats = statData[meas].getStats(maskwindows=maskWindows) plotI1 = statData[meas].winStats.index(cplot[0]) plotData1 = np.squeeze(stats[:, options["eFreqI"], plotI1]) plotI2 = statData[meas].winStats.index(cplot[1]) plotData2 = np.squeeze(stats[:, options["eFreqI"], plotI2]) # add to all data if plotData1.size == 0: continue if plotData1.size == 1: plotAll1 = plotAll1 + [float(plotData1)] plotAll2 = plotAll2 + [float(plotData2)] else: plotAll1 = plotAll1 + plotData1.tolist() plotAll2 = plotAll2 + plotData2.tolist() plotAll1 = np.array(plotAll1) plotAll2 = np.array(plotAll2) nbins = 200 if len(options["xlim"]) > 0: plt.xlim(options["xlim"]) rangex = options["xlim"] else: minx = np.percentile(plotAll1, 2) maxx = np.percentile(plotAll1, 98) ax.set_xlim(minx, maxx) rangex = [minx, maxx] if len(options["ylim"]) > 0: plt.ylim(options["ylim"]) rangey = options["ylim"] else: miny = np.percentile(plotAll2, 2) maxy = np.percentile(plotAll2, 98) ax.set_ylim(miny, maxy) rangey = [miny, maxy] plt.hist2d( plotAll1, plotAll2, bins=(nbins, nbins), range=[rangex, rangey], cmap=plt.cm.inferno, ) # axis format plt.xlabel(cplot[0], fontsize=plotfonts["axisLabel"]) plt.ylabel(cplot[1], fontsize=plotfonts["axisLabel"]) plt.grid(True) # set tick sizes for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(plotfonts["axisTicks"]) # plot format, show and save # fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92]) if options["save"]: impath = projData.imagePath sampleFreqStr = fileFormatSampleFreq(sampleFreq) filename = "statDensityplot_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format( stat, site, sampleFreqStr, options["declevel"], options["eFreqI"], options["specdir"], ) if options["maskname"] != "": filename = "{}_{}".format(filename, options["maskname"]) savename = savePlot(impath, filename, fig) projectText("Image saved to file {}".format(savename)) if options["show"]: plt.show(block=options["plotoptions"]["block"]) if not options["show"] and options["save"]: plt.close(fig) return None return fig
def viewStatisticHistogram( projData: ProjectData, site: str, sampleFreq: float, stat: str, **kwargs ) -> Union[Figure, None]: """View statistic histograms for a single sampling frequency of a site Parameters ---------- projData : ProjectData A project instance site : str The site for which to plot statistics stat : str The statistic to plot sampleFreq : float The sampling frequency for which to plot statistics declevel : int The decimation level to plot eFreqI : int The evaluation frequency index specdir : str The spectra directory maskname : str Mask name numbins : int The number of bins for the histogram data binning xlim : List, optional Limits for the x axis maxcols : int The maximum number of columns in the plots show : bool, optional Show the spectra plot save : bool, optional Save the plot to the images directory plotoptions : Dict, optional Dictionary of plot options Returns ------- matplotlib.pyplot.figure or None A matplotlib figure unless the plot is not shown and is saved, in which case None. If no data was found, None. """ from resistics.common.plot import savePlot, plotOptionsSpec, getPlotRowsAndCols options = {} options["declevel"] = 0 options["eFreqI"] = 0 options["specdir"] = projData.config.configParams["Spectra"]["specdir"] options["maskname"] = "" options["numbins"] = 40 options["xlim"] = [] options["maxcols"] = 4 options["show"] = True options["save"] = False options["plotoptions"] = plotOptionsSpec() options = parseKeywords(options, kwargs) projectText( "Plotting histogram for statistic {}, site {} and sampling frequency {}".format( stat, site, sampleFreq ) ) statData = getStatisticDataForSampleFreq( projData, site, sampleFreq, stat, declevel=options["declevel"], specdir=options["specdir"], ) statMeas = list(statData.keys()) if len(statMeas) == 0: projectWarning( "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format( site, sampleFreq, stat, options["declevel"] ) ) return None # get the statistic components statComponents = statData[statMeas[0]].winStats # get the evaluation frequency eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]] # get the mask data maskWindows = [] if options["maskname"] != "": maskData = getMaskData(projData, site, options["maskname"], sampleFreq) maskWindows = maskData.getMaskWindowsFreq( options["declevel"], options["eFreqI"] ) # plot information nrows, ncols = getPlotRowsAndCols(options["maxcols"], len(statComponents)) numbins = options["numbins"] plotfonts = options["plotoptions"]["plotfonts"] fig = plt.figure(figsize=options["plotoptions"]["figsize"]) # suptitle st = fig.suptitle( "{} histogram for {}, sampling frequency {} Hz, decimation level {} and evaluation frequency {} Hz".format( stat, site, sampleFreq, options["declevel"], eFreq ), fontsize=plotfonts["suptitle"], ) st.set_y(0.98) # now plot the data for idx, val in enumerate(statComponents): ax = plt.subplot(nrows, ncols, idx + 1) plt.title("Histogram {}".format(val), fontsize=plotfonts["title"]) plotData = np.empty(shape=(0)) for meas in statMeas: stats = statData[meas].getStats(maskwindows=maskWindows) plotData = np.concatenate( (plotData, np.squeeze(stats[:, options["eFreqI"], idx])) ) # remove infinities and nans plotData = plotData[np.isfinite(plotData)] # x axis options xlim = ( options["xlim"] if len(options["xlim"]) > 0 else [np.min(plotData), np.max(plotData)] ) plt.xlim(xlim) plt.xlabel("Value", fontsize=plotfonts["axisLabel"]) # now plot with xlim in mind plt.hist(plotData, numbins, range=xlim, facecolor="red", alpha=0.75) plt.grid() # y axis options plt.ylabel("Count", fontsize=plotfonts["axisLabel"]) # set tick sizes for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(plotfonts["axisTicks"]) # plot format, show and save fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92]) if options["save"]: impath = projData.imagePath sampleFreqStr = fileFormatSampleFreq(sampleFreq) filename = "statHist_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format( stat, site, sampleFreqStr, options["declevel"], options["eFreqI"], options["specdir"], ) if options["maskname"] != "": filename = "{}_{}".format(filename, options["maskname"]) savename = savePlot(impath, filename, fig) projectText("Image saved to file {}".format(savename)) if options["show"]: plt.show(block=options["plotoptions"]["block"]) if not options["show"] and options["save"]: plt.close(fig) return None return fig
def viewStatistic( projData: ProjectData, site: str, sampleFreq: Union[int, float], stat: str, **kwargs ) -> Union[Figure, None]: """View statistic data for a single sampling frequency of a site Parameters ---------- projData : ProjectData A project instance site : str The site for which to plot statistics stat : str The statistic to plot sampleFreq : float The sampling frequency for which to plot statistics declevel : int The decimation level to plot eFreqI : int The evaluation frequency index specdir : str The spectra directory maskname : str Mask name clim : List, optional Limits for colourbar axis xlim : List, optional Limits for the x axis ylim : List, optional Limits for the y axis colortitle : str, optional Title for the colourbar show : bool, optional Show the spectra plot save : bool, optional Save the plot to the images directory plotoptions : Dict, optional Dictionary of plot options Returns ------- matplotlib.pyplot.figure or None A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, None. """ from resistics.common.plot import savePlot, plotOptionsSpec, getPlotRowsAndCols options = {} options["declevel"] = 0 options["eFreqI"] = 0 options["specdir"] = projData.config.configParams["Spectra"]["specdir"] options["maskname"] = "" options["clim"] = [] options["xlim"] = [] options["ylim"] = [] options["colortitle"] = "" options["show"] = True options["save"] = False options["plotoptions"] = plotOptionsSpec() options = parseKeywords(options, kwargs) projectText( "Plotting statistic {} for site {} and sampling frequency {}".format( stat, site, sampleFreq ) ) statData = getStatisticDataForSampleFreq( projData, site, sampleFreq, stat, declevel=options["declevel"], specdir=options["specdir"], ) statMeas = list(statData.keys()) if len(statMeas) == 0: projectWarning( "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format( site, sampleFreq, stat, options["declevel"] ) ) return None # get the evaluation frequency eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]] # get the mask data maskWindows = [] if options["maskname"] != "": maskData = getMaskData(projData, site, options["maskname"], sampleFreq) maskWindows = maskData.getMaskWindowsFreq( options["declevel"], options["eFreqI"] ) # setup the figure plotfonts = options["plotoptions"]["plotfonts"] fig = plt.figure(figsize=options["plotoptions"]["figsize"]) # get the date limits siteData = projData.getSiteData(site) if len(options["xlim"]) == 0: start = siteData.getMeasurementStart(statMeas[0]) end = siteData.getMeasurementEnd(statMeas[0]) for meas in statMeas: start = min(start, siteData.getMeasurementStart(meas)) end = max(end, siteData.getMeasurementEnd(meas)) options["xlim"] = [start, end] # do the plots for meas in statMeas: statData[meas].view( options["eFreqI"], fig=fig, xlim=options["xlim"], ylim=options["ylim"], clim=options["clim"], label=meas, plotfonts=options["plotoptions"]["plotfonts"], maskwindows=maskWindows, ) # add a legened plt.legend(markerscale=4, fontsize=plotfonts["legend"]) # do the title after all the plots fig.suptitle( "{} values for {}, sampling frequency = {:.2f} Hz, decimation level = {} and evaluation frequency {} Hz".format( stat, site, sampleFreq, options["declevel"], eFreq ), fontsize=plotfonts["suptitle"], ) # plot format, show and save fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92]) if options["save"]: impath = projData.imagePath sampleFreqStr = fileFormatSampleFreq(sampleFreq) filename = "stat_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format( stat, site, sampleFreqStr, options["declevel"], options["eFreqI"], options["specdir"], ) if options["maskname"] != "": filename = "{}_{}".format(filename, options["maskname"]) savename = savePlot(impath, filename, fig) projectText("Image saved to file {}".format(savename)) if options["show"]: plt.show(block=options["plotoptions"]["block"]) if not options["show"] and options["save"]: plt.close(fig) return None return fig