def main(argv): parser = resnet_run_loop.ResnetArgParser( resnet_size_choices=[18, 34, 50, 101, 152, 200]) parser.set_defaults(train_epochs=100, data_dir='./data', model_dir='./model') flags = parser.parse_args(args=argv[1:]) train_path = os.path.join(flags.data_dir, 'train.tfrecord') test_path = os.path.join(flags.data_dir, 'test.tfrecord') _NUM_IMAGES['train'] = sum( 1 for _ in tf.python_io.tf_record_iterator(train_path)) _NUM_IMAGES['test'] = sum( 1 for _ in tf.python_io.tf_record_iterator(test_path)) # batch_size=32 # data_dir = './data', # model_dir = './model' # resnet_size = 50 # version = 2 # train_epochs = 100 # epochs_between_evals = 1 # max_train_steps = None resnet_run_loop.resnet_main(flags, model_fn, input_fn)
def main(argv): parser = resnet_run_loop.ResnetArgParser( resnet_size_choices=[18, 26, 34, 50, 101, 152, 200]) parser.set_defaults(train_epochs=90, version=1) flags = parser.parse_args(args=argv[2:]) if flags.oss_load: auth = oss2.Auth(_ACCESS_ID, _ACCESS_KEY) bucket = oss2.Bucket(auth, _HOST, _BUCKET) seed = int(argv[1]) print('Setting random seed = ', seed) print('special seeding') mlperf_log.resnet_print(key=mlperf_log.RUN_SET_RANDOM_SEED, value=seed) random.seed(seed) tf.set_random_seed(seed) np.random.seed(seed) mlperf_log.resnet_print(key=mlperf_log.PREPROC_NUM_TRAIN_EXAMPLES, value=_NUM_IMAGES['train']) mlperf_log.resnet_print(key=mlperf_log.PREPROC_NUM_EVAL_EXAMPLES, value=_NUM_IMAGES['validation']) input_function = input_fn resnet_run_loop.resnet_main( seed, flags, imagenet_model_fn, input_function, shape=[_DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS])
def main(argv): parser = resnet_run_loop.ResnetArgParser( resnet_size_choices=[18, 34, 50, 101, 152, 200]) parser.set_defaults(train_epochs=100, data_dir='./data') flags = parser.parse_args(args=argv[1:]) flags.model_dir = './no-lmk-model' if flags.no_lmk else './lmk-model' _NUM_IMAGES['train'] = sum(1 for _ in tf.python_io.tf_record_iterator( get_filenames(True, flags.data_dir)[0])) _NUM_IMAGES['test'] = sum(1 for _ in tf.python_io.tf_record_iterator( get_filenames(False, flags.data_dir)[0])) # batch_size=32 # no-lmk = False # data_dir = './data', # model_dir = './lmk-model' # resnet_size = 50 # version = 2 # train_epochs = 100 # epochs_between_evals = 1 # max_train_steps = None resnet_run_loop.resnet_main(flags, model_fn, input_fn)
def main(argv): parser = resnet_run_loop.ResnetArgParser( resnet_size_choices=[18, 34, 50, 101, 152, 200]) parser.set_defaults(train_epochs=100, data_dir='../dataset', model_dir='./model') flags = parser.parse_args(args=argv[1:]) train_path = os.path.join(flags.data_dir, 'train.tfrecord') validation_path = os.path.join(flags.data_dir, 'validation.tfrecord') predict_path = os.path.join(flags.data_dir, 'predict.tfrecord') _NUM_IMAGES['train'] = sum( 1 for _ in tf.python_io.tf_record_iterator(train_path)) _NUM_IMAGES['validation'] = sum( 1 for _ in tf.python_io.tf_record_iterator(validation_path)) _NUM_IMAGES['predict'] = sum( 1 for _ in tf.python_io.tf_record_iterator(predict_path)) input_function = flags.use_synthetic_data and get_synth_input_fn( ) or input_fn resnet_run_loop.resnet_main( flags, model_fn, input_function, shape=[_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS])
def run_cifar(flags_obj): input_function = input_fn resnet_run_loop.resnet_main(flags_obj, cifar_10_model_fn, input_function, DATASET_NAME, shape=[_HEIGHT, _WIDTH, _NUM_CLASSES])
def run_imagenet(flags_obj): """Run ResNet ImageNet training and eval loop. Args: flags_obj: An object containing parsed flag values. """ input_function = input_fn resnet_run_loop.resnet_main( flags_obj, imagenet_model_fn, input_function, DATASET_NAME, shape=[_DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS])
def main(argv): parser = resnet_run_loop.ResnetArgParser( resnet_size_choices=[18, 34, 50, 101, 152, 200]) parser.set_defaults(train_epochs=100) flags = parser.parse_args(args=argv[1:]) input_function = flags.use_synthetic_data and get_synth_input_fn( ) or input_fn resnet_run_loop.resnet_main(flags, imagenet_model_fn, input_function)
def run_imagenet(flags_obj): """Run ResNet ImageNet training and eval loop. Args: flags_obj: An object containing parsed flag values. """ input_function = (flags_obj.use_synthetic_data and get_synth_input_fn(flags_core.get_tf_dtype(flags_obj)) or input_fn) resnet_run_loop.resnet_main( flags_obj, imagenet_model_fn, input_function, DATASET_NAME, shape=[_DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS])
def main(argv): parser = resnet_run_loop.ResnetArgParser() # Set defaults that are reasonable for this model. parser.set_defaults(data_dir='/tmp/cifar10_data', model_dir='/tmp/cifar10_model', resnet_size=32, train_epochs=250, epochs_between_evals=10, batch_size=128, select_device='NGRAPH') flags = parser.parse_args(args=argv[1:]) input_function = flags.use_synthetic_data and get_synth_input_fn() or input_fn resnet_run_loop.resnet_main(flags, cifar10_model_fn, input_function)
def run_imagenet(flags_obj): """Run ResNet ImageNet training and eval loop. Args: flags_obj: An object containing parsed flag values. Returns: Dict of results of the run. Contains the keys `eval_results` and `train_hooks`. `eval_results` contains accuracy (top_1) and accuracy_top_5. `train_hooks` is a list the instances of hooks used during training. """ # 选择输入数据还是合成数据,get_synth_input_fn是随机合成的数据 # input_fn是输入数据 input_function = (flags_obj.use_synthetic_data and get_synth_input_fn( flags_core.get_tf_dtype(flags_obj)) or input_fn) result = resnet_run_loop.resnet_main( flags_obj, imagenet_model_fn, input_function, DATASET_NAME, shape=[DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS]) return result
def run_cifar(flags_obj, config, conf_matrix): """Run ResNet CIFAR-10 training and eval loop. Args: flags_obj: An object containing parsed flag values. """ if config._mode == 'predict': input_function = input_fn_predict else: input_function = (flags_obj.use_synthetic_data and get_synth_input_fn() or input_fn) resnet_run_loop.resnet_main(flags_obj, config, conf_matrix, cifar10_model_fn, input_function, DATASET_NAME, shape=[_HEIGHT, _WIDTH, _NUM_CHANNELS])
def main(argv): parser = resnet_run_loop.ResnetArgParser() # Set defaults that are reasonable for this model. parser.set_defaults(data_dir='cifar10_data', model_dir='cifar10_model', resnet_size=32, train_epochs=250, epochs_between_evals=10, batch_size=128) flags = parser.parse_args(args=argv[1:]) import pdb pdb.set_trace() input_function = flags.use_synthetic_data and get_synth_input_fn( ) or input_fn resnet_run_loop.resnet_main(flags, cifar10_model_fn, input_function, shape=[_HEIGHT, _WIDTH, _NUM_CHANNELS])
def run_cifar(flags_obj): """Run ResNet CIFAR-10 training and eval loop. Args: flags_obj: An object containing parsed flag values. """ input_function = (flags_obj.use_synthetic_data and get_synth_input_fn() or input_fn) eval_accuracy = resnet_run_loop.resnet_main( # Xinyi modified flags_obj, cifar10_model_fn, input_function, DATASET_NAME, shape=[_HEIGHT, _WIDTH, _NUM_CHANNELS]) return eval_accuracy # Xinyi modified
def run_cifar(flags_obj): """Run ResNet CIFAR-10 training and eval loop. Args: flags_obj: An object containing parsed flag values. Returns: Dictionary of results. Including final accuracy. """ if flags_obj.image_bytes_as_serving_input: tf.compat.v1.logging.fatal( '--image_bytes_as_serving_input cannot be set to True for CIFAR. ' 'This flag is only applicable to ImageNet.') return input_function = (flags_obj.use_synthetic_data and get_synth_input_fn( flags_core.get_tf_dtype(flags_obj)) or input_fn) result = resnet_run_loop.resnet_main(flags_obj, cifar10_model_fn, input_function, DATASET_NAME, shape=[HEIGHT, WIDTH, NUM_CHANNELS]) return result