query_cam, query_label, query_dict = get_id(query_path)
gallery_cam, gallery_label, gallery_dict = get_id(gallery_path)
"""
for key, value in query_dict.items():
    print(key)

for key, value in gallery_dict.items():
    print(key)
"""

print('-------test-----------')
if opt.loss_type == 'soft':
    if opt.name == 'resnet_50':
        model_structure = ft_net(751)
    elif opt.name == 'resnext_50':
        model_structure = resnext50(num_classes=751)
    elif opt.name == 'densenet_121':
        model_structure = ft_net_dense(751)
model = load_network(model_structure)

# Change to test mode
model = model.eval()
if use_gpu:
    model = model.cuda()

for p in model.parameters():
    p.requires_grad = False
    # print(p.requires_grad)

gallery_feature_2048_adv = torch.FloatTensor()
gallery_feature_2048 = torch.FloatTensor()
Example #2
0
    torch.save(network.cpu().state_dict(), save_path)
    if torch.cuda.is_available:
        network.cuda(gpu_ids[0])


######################################################################
# Finetuning the convnet
# ----------------------
#
# Load a pretrainied model and reset final fully connected layer.
#

if opt.use_dense:
    model = ft_net_dense(len(class_names))
elif opt.use_resnext:
    model = resnext50(num_classes=len(class_names))
    model.load_state_dict(torch.load('resnext_pretrain.pth'),False)
else:
    model = ft_net(len(class_names))
print(model)

if use_gpu:
    model = model.cuda()

criterion = nn.CrossEntropyLoss()
#criterion = AngleLoss()
#ignored_params = list(map(id, model.model.fc.parameters() )) + list(map(id, model.fc0.parameters() ))
#base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())

# Observe that all parameters are being optimized
#optimizer_ft = optim.SGD([
Example #3
0
def main():
    global args
    args = parser.parse_args()
    print('config: wd', args.weight_decay, 'lr', args.lr, 'batch_size',
          args.batch_size, 'num_gpus', args.num_gpus)
    # torch.cuda.device_count(): 返回可得到的GPU数量
    iteration_size = args.num_gpus // torch.cuda.device_count(
    )  # do multiple iterations
    assert iteration_size >= 1
    args.weight_decay = args.weight_decay * iteration_size  # will cancel out with lr
    args.lr = args.lr / iteration_size
    args.batch_size = args.batch_size // iteration_size
    # 对于只有一块GPU来说,参数没有改变
    print('real: wd', args.weight_decay, 'lr', args.lr, 'batch_size',
          args.batch_size, 'iteration_size', iteration_size)
    # 分布式处理部分
    args.distributed = args.world_size > 1

    if args.distributed:
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size)

    # create model
    print("=> creating model '{}'".format(args.arch))

    from resnext import resnext50
    model = resnext50(num_classes=80)

    #    from resnext import resnext50_elastic
    #    model = resnext50_elastic(num_classes=80)

    #    from resnext_MulTask_12 import resnext50_elastic
    #    model = resnext50_elastic(num_classes=80)  # 模型 经过预训练   # opts["num_labels"] = 14

    # count number of parameters
    count = 0
    params = list()
    for n, p in model.named_parameters():
        if '.ups.' not in n:
            params.append(p)
            count += np.prod(p.size())
    print('Parameters:', count / 1000000.0)  # 参数的数量

    # count flops
    model = add_flops_counting_methods(model)
    model.eval()
    image = torch.randn(1, 3, 224, 224)

    model.start_flops_count()
    model(image).sum()
    model.stop_flops_count()
    print("GFLOPs",
          model.compute_average_flops_cost() / 1000000000.0)  # FLOP的个数

    # normal code
    model = torch.nn.DataParallel(model).cuda()
    # BCE损失函数
    criterion = nn.BCEWithLogitsLoss().cuda()
    # SGD优化策略
    optimizer = torch.optim.SGD([
        {
            'params': iter(params),
            'lr': args.lr
        },
    ],
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)  # 加载ckpt文件

            resume = ('module.fc.bias' in checkpoint['state_dict'] and
                      checkpoint['state_dict']['module.fc.bias'].size() == model.module.fc.bias.size()) or \
                     ('module.classifier.bias' in checkpoint['state_dict'] and
                      checkpoint['state_dict']['module.classifier.bias'].size() == model.module.classifier.bias.size())
            if resume:
                # True resume: resume training on MS-COCO  # 在MS-COCO上 评估?
                print()
                print("resume training on MS-COCO...")
                print("在MS-COCO上 评估...")
                print()
                model.load_state_dict(checkpoint['state_dict'], strict=False)
                optimizer.load_state_dict(
                    checkpoint['optimizer']
                ) if 'optimizer' in checkpoint else print('no optimizer found')
                args.start_epoch = checkpoint[
                    'epoch'] if 'epoch' in checkpoint else args.start_epoch
            else:
                # Fake resume: transfer from ImageNet # 从ImageNet——>MS-COCO 训练?
                print()
                print("transfer from ImageNet...")
                print("从ImageNet——>MS-COCO 训练...")
                print()
                for n, p in list(checkpoint['state_dict'].items()):
                    if 'classifier' in n or 'fc' in n:
                        print(n, 'deleted from state_dict')
                        del checkpoint['state_dict'][n]
                model.load_state_dict(checkpoint['state_dict'], strict=False)

            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume,
                checkpoint['epoch'] if 'epoch' in checkpoint else 'unknown'))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    # 提升一点训练速度,没什么额外开销,一般都会加
    # 仅限于非多尺度训练!否则效果更差!
    cudnn.benchmark = True

    # Data loading code
    # ms-coco正则化部分
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    # 训练集处理
    train_dataset = CocoDetection(
        os.path.join(args.data, 'train2014'),
        os.path.join(args.data, 'annotations/instances_train2014.json'),
        transforms.Compose([
            transforms.RandomResizedCrop(224),  # 随机裁剪
            transforms.RandomHorizontalFlip(),  # 随机水平翻转
            transforms.ToTensor(),
            normalize,  # 正则化
        ]))
    #    print("train_dataset: ", train_dataset)
    # 验证集处理
    val_dataset = CocoDetection(
        os.path.join(args.data, 'val2014'),
        os.path.join(args.data, 'annotations/instances_val2014.json'),
        transforms.Compose([
            transforms.Resize((224, 224)),  # 调整图像大小
            transforms.ToTensor(),
            normalize,  # 正则化
        ]))

    train_sampler = torch.utils.data.sampler.RandomSampler(
        train_dataset)  # 随机采样器

    # torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=default_collate,
    #                             pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None)
    # 1.dataset(Dataset): (image, label)形式,数据读取接口(比如torchvision.datasets.ImageFolder)或者自定义的数据接口的输出,
    #                     该输出是torch.utils.data.Dataset类的对象(或者继承自该类的自定义类的对象)。
    # 2.batch_size: 批训练数据量的大小,根据具体情况设置即可。(默认:1)
    # 3.shuffle: 打乱数据,一般在训练数据中会采用。(默认:False)
    # 4.sampler(Sampler, optional): 从数据集中提取样本的策略。如果指定,“shuffle”必须为false。一般默认即可。
    # 5.num_workers,这个参数必须大于等于0,其他大于0的数表示通过多个进程来导入数据,可以加快数据导入速度。(默认:0)
    # 6.pin_memory (bool, optional):数据加载器将把张量复制到CUDA内存中,然后返回它们。也就是一个数据拷贝的问题。
    # 7.drop_last (bool, optional): 如果数据集大小不能被批大小整除,则设置为“true”以除去最后一个未完成的批。如果“false”那么最后一批将更小。(默认:false)
    # 8.timeout(numeric, optional):设置数据读取超时,但超过这个时间还没读取到数据的话就会报错。(默认:0)
    # 训练集
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler,
                                               drop_last=True)
    # 验证集
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    if args.evaluate:
        validate_multi(val_loader, model, criterion)  # 在验证集上测试数据,return返回
        return

    for epoch in range(args.start_epoch, args.epochs):
        # 学习率调整
        coco_adjust_learning_rate(optimizer, epoch)
        # 模型训练
        train_multi(train_loader, model, criterion, optimizer, epoch,
                    iteration_size)
        print("***********************************************")
        print("模型训练完第 " + str(epoch + 1) + " 轮,下面进行验证集实验...")
        print("***********************************************")
        # evaluate on validation set
        # 模型验证
        validate_multi(val_loader, model, criterion)
        # 模型保存的位置
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict(),
            },
            False,
            filename='3-MSCOCO--model-train-demo/' + 'coco_' + args.arch +
            '_checkpoint_' + str(epoch + 1) + '.pth.tar')
Example #4
0
def main():
    global args, best_prec1
    args = parser.parse_args()

    # create model
    model = resnext.resnext50(baseWidth=args.base_width,
                              cardinality=args.cardinality)

    model = torch.nn.DataParallel(model).cuda()

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    # Data loading code
    traindir = os.path.join(args.data, 'ILSVRC2012_img_train')
    valdir = os.path.join(args.data, 'ILSVRC2012_img_val')
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_loader = torch.utils.data.DataLoader(datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomRotation(10),
            transforms.RandomResizedCrop(224),
            transforms.ColorJitter(
                brightness=0.4,
                contrast=0.4,
                saturation=0.4,
            ),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ])),
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True)

    #    train_loader = torch.utils.data.DataLoader(
    #        datasets.ImageFolder(traindir, transforms.Compose([
    #            transforms.RandomSizedCrop(224),
    #            transforms.RandomHorizontalFlip(),
    #            transforms.ToTensor(),
    #            normalize,
    #        ])),
    #        batch_size=args.batch_size, shuffle=True,
    #        num_workers=args.workers, pin_memory=True)

    val_loader = torch.utils.data.DataLoader(datasets.ImageFolder(
        valdir,
        transforms.Compose([
            transforms.Scale(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ])),
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
        is_best = prec1 > best_prec1
        best_prec1 = max(prec1, best_prec1)
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'arch': 'resnet',
                'state_dict': model.state_dict(),
                'best_prec1': best_prec1,
                'optimizer': optimizer.state_dict(),
            }, is_best)
Example #5
0
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=args.batch_size,
                                          shuffle=False,
                                          pin_memory=True,
                                          num_workers=4)

if args.model == 'resnet18':
    cnn = ResNet18(num_classes=num_classes)
elif args.model == 'resnet50':
    from resnet import resnet50
    cnn = resnet50(num_classes)
    print(cnn)
elif args.model == 'resnext50':
    from resnext import resnext50
    cnn = resnext50(num_classes)
    print(cnn)
elif args.model == 'densenet121':
    from densenet import densenet121
    cnn = densenet121(num_classes)
    print(cnn)
elif args.model == 'wideresnet':
    if args.dataset == 'svhn':
        cnn = WideResNet(depth=16,
                         num_classes=num_classes,
                         widen_factor=8,
                         dropRate=0.4)
    else:
        cnn = WideResNet(depth=28,
                         num_classes=num_classes,
                         widen_factor=10,