def show(self, proj='moll', lon_0=180, tmap=None, coord=None): from mpl_toolkits.basemap import Basemap import pylab as plt import resources.figures as figures figures.set_fancy() if coord==None: ra = np.rad2deg(self.grid['points'][:,0]) dec = np.rad2deg(self.grid['points'][:,1]) else: ra = np.rad2deg(coord[:,0]) dec = np.rad2deg(coord[:,1]) fig = plt.figure() m = Basemap(projection=proj,lon_0=lon_0)#,celestial=True) # celestial=True inverses alpha (East towards the right) m.drawparallels(np.arange(-60.,90.,30.),labels=[1,0,0,0]) m.drawmeridians(np.arange(0.,360.,30.)) ra__ = np.arange(0., 360., 30.) x, y = m(ra__,ra__*0) for x,y,t in zip(x,y,ra__): plt.text(x, y, figures.format_degree(t), color='black', ha='center', weight='black', size='small') ##93c6ed if tmap==None: m.scatter(ra,dec,latlon=True,marker='x',s=20,cmap=plt.cm.binary) else: m.scatter(ra,dec,c=tmap,latlon=True,marker='x',s=20,cmap=plt.cm.binary) plt.show()
def show(self, proj='moll', lon_0=180, tmap=None, coord=None): from mpl_toolkits.basemap import Basemap import pylab as plt import resources.figures as figures figures.set_fancy() if coord == None: ra = np.rad2deg(self.grid['points'][:, 0]) dec = np.rad2deg(self.grid['points'][:, 1]) else: ra = np.rad2deg(coord[:, 0]) dec = np.rad2deg(coord[:, 1]) fig = plt.figure() m = Basemap( projection=proj, lon_0=lon_0 ) #,celestial=True) # celestial=True inverses alpha (East towards the right) m.drawparallels(np.arange(-60., 90., 30.), labels=[1, 0, 0, 0]) m.drawmeridians(np.arange(0., 360., 30.)) ra__ = np.arange(0., 360., 30.) x, y = m(ra__, ra__ * 0) for x, y, t in zip(x, y, ra__): plt.text(x, y, figures.format_degree(t), color='black', ha='center', weight='black', size='small') ##93c6ed if tmap == None: m.scatter(ra, dec, latlon=True, marker='x', s=20, cmap=plt.cm.binary) else: m.scatter(ra, dec, c=tmap, latlon=True, marker='x', s=20, cmap=plt.cm.binary) plt.show()
m.contour(ra_grid, dec_grid, data_grid, 10, colors="k", latlon=True) CS = m.contourf( ra_grid, dec_grid, data_grid, int((mag_max - mag_min) / mag_sep + 1), cmap=plt.cm.gist_rainbow, latlon=True ) # m.fillcontinents(color='coral',lake_color='aqua') # draw parallels and meridians. m.drawparallels(np.arange(-60.0, 90.0, 30.0), labels=[1, 0, 0, 0]) m.drawmeridians(np.arange(0.0, 360.0, 30.0)) ra__ = np.arange(0.0, 360.0, 30.0) # print ra__ x, y = m(ra__, ra__ * 0) for x, y, ra in zip(x, y, ra__): plt.text(x, y, figures.format_degree(ra), color="black", ha="center", weight="black", size="small") ##93c6ed v = np.linspace(mag_min, mag_max, (mag_max - mag_min + 1), endpoint=True) t = map(figures.format_mag, v) cbar = plt.colorbar(CS, ticks=v, orientation="horizontal", shrink=0.8) cbar.set_ticklabels(t) # cbar = plt.colorbar(CS, orientation='horizontal',shrink=.8, ticks=t) # cbar.ax.set_xticklabels(labels) l, b, w, h = plt.gca().get_position().bounds ll, bb, ww, hh = cbar.ax.get_position().bounds cbar.ax.set_position([ll, bb + 0.1, ww, hh]) cbar.set_label(r"$\mathrm{faintest}\ V\ \mathrm{magnitude\ for\ %s\ (%d\%%\ detection)}$" % (typep, min_detection_rate)) if stars: x, y = m(ra_stars, dec_stars)
data_grid, int((mag_max - mag_min) / mag_sep + 1), cmap=plt.cm.gist_rainbow, latlon=True) #m.fillcontinents(color='coral',lake_color='aqua') # draw parallels and meridians. m.drawparallels(np.arange(-60., 90., 30.), labels=[1, 0, 0, 0]) m.drawmeridians(np.arange(0., 360., 30.)) ra__ = np.arange(0., 360., 30.) #print ra__ x, y = m(ra__, ra__ * 0) for x, y, ra in zip(x, y, ra__): plt.text(x, y, figures.format_degree(ra), color='black', ha='center', weight='black', size='small') ##93c6ed v = np.linspace(mag_min, mag_max, (mag_max - mag_min + 1), endpoint=True) t = map(figures.format_mag, v) cbar = plt.colorbar(CS, ticks=v, orientation='horizontal', shrink=.8) cbar.set_ticklabels(t) #cbar = plt.colorbar(CS, orientation='horizontal',shrink=.8, ticks=t) #cbar.ax.set_xticklabels(labels) l, b, w, h = plt.gca().get_position().bounds ll, bb, ww, hh = cbar.ax.get_position().bounds cbar.ax.set_position([ll, bb + 0.1, ww, hh])
#ra_grid -= 180. #ra_grid = ra_grid - 180 #= (ra_grid-np.pi) #*180. / np.pi dec_grid *= const.RAD m.contour( ra_grid,dec_grid,data_grid,10,colors='k',latlon=True) CS = m.contourf( ra_grid ,dec_grid,data_grid,100,cmap=plt.cm.gist_stern,latlon=True,vmin=0) #m.fillcontinents(color='coral',lake_color='aqua') # draw parallels and meridians. m.drawparallels(np.arange(-60.,90.,30.),labels=[1,0,0,0]) m.drawmeridians(np.arange(0.,360.,30.)) ra__ = np.arange(0., 360., 30.) #print ra__ x, y = m(ra__,ra__*0) for x,y,ra in zip(x,y,ra__): plt.text(x, y, figures.format_degree(ra), color='black', ha='center', weight='black', size='small') ##93c6ed t = np.linspace(0., np.amax(density),5) labels = ['%3.1f\%%' % a for a in t] cbar = plt.colorbar(CS, orientation='horizontal',shrink=.8, ticks=t) cbar.ax.set_xticklabels(labels) l,b,w,h = plt.gca().get_position().bounds ll,bb,ww,hh = cbar.ax.get_position().bounds cbar.ax.set_position([ll, bb+0.1, ww, hh]) cbar.set_label('Probabilty of seeing a transit of %d hours for V=%3.1f' % (transit_duration,mag_max)) if stars: x,y = m(ra_stars, dec_stars) m.plot(x,y, 'w*', markersize=10)