def kasumi(arr, encrypt=True): if len(arr) > 8: raise ValueError("Error: Kasumi takes 64 bits as 8 bytes array in input") config.WATCH_KASUMI_NUMBER += 1 exTime = time.time() arr = bm.splitBytes(arr, 4) left = arr[0] right = arr[1] for i in range(0, 8): if not encrypt: i = 7 - i KO = [config.KO1[i], config.KO2[i], config.KO3[i]] KI = [config.KI1[i], config.KI2[i], config.KI3[i]] KL = [config.KL1[i], config.KL2[i]] lp = left if i % 2 == 0: left = FL(KL, FO(KO, KI, left)) else: left = FO(KO, KI, FL(KL, left)) left = bm.b_op(left, right, "XOR") right = lp config.WATCH_GLOBAL_KASUMI += time.time() - exTime return right + left
def run(data, inFile="", encrypt=False, method=3, aad="", key=config.KEY): """ Run encryption of decryption. data: file name with extension encrypt: False to decrypte method: Block cyphering method """ from threading import Thread if len(data) > 100000: thread = Thread(target=watch) thread.daemon = True config.WATCH_EXEC_STATUS = True thread.start() # Keys initialisation kasu.set_key(key) if len(data) > 0: splitted = bm.splitBytes(data) ciphered = cipher(splitted, method, encrypt, aad) return bm.codeOut(ciphered, encrypt, inFile)
def encrypt(M: bytes, publicKey, saving: bool = False): """ Encrypt a message M to make him sendable. """ assert isinstance(M, bytes) n, e = publicKey def process(m): return ut.square_and_multiply(m, e, n) # First, turn M into int Mint = bm.bytes_to_int(M) if Mint < n: # That's a short message m = Mint e = process(m) else: # M is a longer message, so it's divided into blocks size = (it.getKeySize(publicKey) // 8) - 1 e = [process(bm.bytes_to_int(elt)) for elt in bm.splitBytes(M, size)] if saving: e = it.writeKeytoFile(e, "encrypted", config.DIRECTORY_PROCESSING, ".kat") return e
def FI(b1, pKI): b1 = bm.circularRotation(b1, 1, 2) z = bm.splitBytes(pKI, 1) subZ1 = S1[int.from_bytes(z[0], "big")].to_bytes(1, "big") subZ2 = S2[int.from_bytes(z[1], "big")].to_bytes(1, "big") return bm.b_op(b1, subZ1 + subZ2, "XOR")
def set_key(km=config.KEY): """Kasumi's keyscheduler.""" # Chosen as a "nothing up my sleeve" number nums = b"\x124Vx\x9a\xbc\xde\xff\xed\xcb\xa9\x87eC!\x00" # Additionally a modified key K', similarly divided into 16-bit sub keys K'i, is used. kp = bm.b_op(km, nums, "XOR") # The 128-bit key K is divided into eight 16-bit sub keys Ki skm, skp = bm.splitBytes(km, 2), bm.splitBytes(kp, 2) config.KL1 = [bytearray(bm.circularRotation(skm[x], 0, 1)) for x in range(0, 8)] config.KL2 = [skp[(x + 2) % 8] for x in range(0, 8)] config.KO1 = [bytearray(bm.circularRotation(skm[(x + 1) % 8], 0, 5)) for x in range(0, 8)] config.KO2 = [bytearray(bm.circularRotation(skm[(x + 5) % 8], 0, 8)) for x in range(0, 8)] config.KO3 = [bytearray(bm.circularRotation(skm[(x + 6) % 8], 0, 13)) for x in range(0, 8)] config.KI1 = [skp[(x + 4) % 8] for x in range(0, 8)] config.KI2 = [skp[(x + 3) % 8] for x in range(0, 8)] config.KI3 = [skp[(x + 7) % 8] for x in range(0, 8)] # SBoxes initialization considering the given master key ! initRC4(km)
def FO(pKO, pKI, arr): if len(arr) != 4: raise ValueError("FO takes 32 bits as 4 bytes array in input") arr = bm.splitBytes(arr, 2) left = arr[0] right = arr[1] for i in range(0, 3): left = right right = bm.b_op(right, FI(bm.b_op(left, pKO[i], "XOR"), pKI[i]), "XOR") return left + right
def FL(pKL, arr): if len(arr) != 4: raise ValueError("FL takes 32 bits as 4 bytes array in input") arr = bm.splitBytes(arr, 2) left = arr[0] right = arr[1] rp = bm.b_op(bm.circularRotation(bm.b_op(left, pKL[0], "AND"), 0, 1), right, "XOR") lp = bm.b_op(bm.circularRotation(bm.b_op(rp, pKL[1], "OR"), 0, 1), left, "XOR") # Inverted in Galois Field lp = invertGalois2(lp) rp = invertGalois2(rp) return lp + rp
def sponge(N: bytearray, d: int): """ Sponge construction for hash functions. N: Thing to hash \n d: size of hash wanted \n return bytearray """ def pad(N, r): iN = bm.bytes_to_int(N) lN = int.bit_length(iN) # Number of 0 to add b = (r - ((lN + 3) % r)) % r # Padding using the SHA-3 pattern 10*1: a 1 bit, followed by zero or more 0 bits (maximum r − 1) and a final 1 bit. op = ((iN | (1 << b + lN + 1)) << 1) ^ 1 return bm.mult_to_bytes(op) r = 8 d = int(d / 8) blocks = bm.splitBytes(pad(N, r * 8), r) S = bytearray(16) # Absorbing for block in blocks: S[:r] = bm.b_op(S[:r], block) S = md5(S) O = bytearray() # Squeezing while len(O) < d: O += S[:r] S = md5(S) # Truncating with the desired length return O[:d]
def encrypt(M: bytes, publicKey, saving: bool = False): assert isinstance(M, (bytes, bytearray)) p, g, h = publicKey def process(m): y = rd.randrange(1, p - 1) # shared secret -> g^xy c1 = ut.square_and_multiply(g, y, p) s = ut.square_and_multiply(h, y, p) c2 = (m * s) % p return (c1, c2) Mint = bm.bytes_to_int(M) if Mint < p: # That's a short message m = Mint e = process(m) else: # M is a longer message, so it's divided into blocks # You need to choose a different y for each block to prevent # from Eve's attacks. size = (it.getKeySize(publicKey) // 8) - 1 e = [process(bm.bytes_to_int(elt)) for elt in bm.splitBytes(M, size)] if saving: e = it.writeKeytoFile(e, "encrypted", config.DIRECTORY_PROCESSING, ".kat") return e
def md5(block): """ Return md5 hash block: bytearray of data to hash """ import math # Done using the Wikipedia algorithm def iToB(i): return int.to_bytes(i, 4, "little") def p32(a, b): return (a + b) % (1 << 32) s = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] K = [] for i in range(64): K.append((math.floor(2 ** 32 * abs(math.sin(i + 1)))) % (1 << 32)) iN = bm.bytes_to_int(block) lN = len(block) * 8 # Number of 0 to add b = 512 - ((lN + 1) % 512) lN = int.from_bytes(lN.to_bytes(8, byteorder="little"), byteorder="big", signed=False) iN = (((iN << 1) | 1) << b) ^ lN block = bm.mult_to_bytes(iN) b512 = bm.splitBytes(block, 64) h1 = 0x67452301 h2 = 0xEFCDAB89 h3 = 0x98BADCFE h4 = 0x10325476 for b5 in b512: blocks = bm.splitBytes(b5, 4) A = h1 B = h2 C = h3 D = h4 for i in range(64): if i <= 15: F = (B & C) | (~B & D) g = i elif i <= 31: F = (D & B) | (~D & C) g = (5 * i + 1) % 16 elif i <= 47: F = B ^ C ^ D g = (3 * i + 5) % 16 else: # C xor (B or (not D)) F = C ^ (B | ~D) % (1 << 32) g = (7 * i) % 16 # F + A + K[i] + M[g] try: F = p32(p32(p32(F, A), K[i]), int.from_bytes(blocks[g], "little")) except IndexError: print(i, K, blocks[g]) raise Exception("Error") A = D D = C C = B # B + leftrotate(F, s[i]) B = p32(B, ((F << s[i]) | (F >> (32 - s[i])))) h1 = p32(A, h1) h2 = p32(B, h2) h3 = p32(C, h3) h4 = p32(D, h4) return bm.packSplittedBytes([iToB(h1), iToB(h2), iToB(h3), iToB(h4)])
def GCM(arr, encrypt=True, aad=""): """ GCM is CTR mode with authentification of additional data (AAD) authenticated with multiplication in a Galois Field arr: array of bytearray of 8 bytes of data to encrypt/decrypt encrypt: boolean, true to encypt aad: string of additional authenticated data """ if encrypt: iv = IV(arr) else: iv = IV_action(arr) # Integrity Check Balue icv = IV_action(arr) # Additional authenticated data (AAD), which is denoted as A A = [] if encrypt: if aad != "": aadc = aad.encode() if len(aadc) > 1 << 64: raise Exception("Too much AAD") A = bm.splitBytes(aadc, 8) A[-1] = bm.zfill_b(A[-1], 8) else: header = arr[0] epos = int.from_bytes(header, "big") A = arr[1:epos] arr = arr[epos:] # Encrypted message C = [] # 1 + α + α3 + α4 + α64 - 64 field polynomial p = int( "10000000000000000000000000000000000000000000000000000000000001111", 2) def lenb(i): return (len(i) * 8).to_bytes(8, "big") def GHASH64(H, A, C, X, i): n = len(C) m = len(A) if i <= m: # A1 = A[1-1] return gz2.poly_mult_mod_2( bm.bytes_to_int(bm.b_op(X, A[i - 1], "XOR")), H, p) if i <= m + n: return gz2.poly_mult_mod_2( bm.bytes_to_int(bm.b_op(X, C[i - m - 1], "XOR")), H, p) if i == m + n + 1: return gz2.poly_mult_mod_2( a=bm.bytes_to_int( bm.b_op( b1=gz2.poly_mult_mod_2( bm.bytes_to_int(bm.b_op(X, lenb(A), "XOR")), H, p).to_bytes(8, "big"), b2=lenb(C), ope="XOR", )), b=H, mod=p, ) H = bm.bytes_to_int(kasu.kasumi(b"\x00" * 8)) Y = GHASH64(H, b"", [iv], b"\x00", 1).to_bytes(8, "big") E0 = kasu.kasumi(Y) n = len(arr) m = len(A) # equivalent of CTR mode for i in range(n): config.WATCH_PERCENTAGE = (((n * 2 + m + 1) - ((n * 2 + m + 1) - i)) / (n * 2 + m + 1)) * 100 exTime = time.time() # treats the rightmost 32bits of its argument as a nonnegative integer with the least significant bit on the right, and increments this value modulo 2^32 Y = Y[:4] + ( (int.from_bytes(Y[-4:], "big") + 1) % 1 << 32).to_bytes(4, "big") E = kasu.kasumi(Y) C.append(bm.b_op(arr[i], E, "XOR")) config.WATCH_GLOBAL_CIPHER += time.time() - exTime config.WATCH_BLOC_CIPHER = config.WATCH_GLOBAL_CIPHER / (i + 1) config.WATCH_BLOC_KASUMI = config.WATCH_GLOBAL_KASUMI / (i + 1) res = C # plaintext is in C when we decrypt, me must replace it with the ciphertext if not encrypt: C = arr # first init of X = GHASH64(i=0) = b'\x00' X = b"\x00" for i in range(n + m + 1): config.WATCH_PERCENTAGE = (((n * 2 + m + 1) - ((n * 2 + m + 1) - (i + n))) / (n * 2 + m + 1)) * 100 exTime = time.time() X = GHASH64(H, A, C, X, i + 1).to_bytes(8, "big") config.WATCH_GLOBAL_CIPHER += time.time() - exTime config.WATCH_BLOC_CIPHER = config.WATCH_GLOBAL_CIPHER / (i + 1) icvc = bm.b_op(E0, X, "XOR") if not encrypt: if icv != icvc: print( "\nYELLOW: INTEGRITY CHECK CONTROL INCORRECT, AAD HAVE BEEN MODIFIED !!" ) if encrypt: IV_action(res, icvc, "store") # Adding the IV to the encrypted data IV_action(res, iv, "store") header = (1 + len(A)).to_bytes(8, "big") res = [header] + A + res return res