from data import DayNight
from training import Results
from results import image_plot


from runjoint import models


experiment_name = "daynight"

train_steps = 100000
save_steps = 50000

data = DayNight()

tracker = Results.load(experiment_name)

syntheses = ['reconstruct', 'sample']


for i in range(save_steps, train_steps+save_steps, save_steps):

    suffix = str(i)

    image_plot(tracker, models, data=data, suffix=suffix, syntheses=syntheses,
               n_rows=3, n_cols=4, n_pixels=0, spacing=0, model_type='joint', count=10)

from runcolor import models

experiment_name = "global_lossy_cifar"

train_steps = 5000
save_steps = 5000

suffix = None

data = CIFAR()  # MNIST, CIFAR

tracker = Results.load(experiment_name)  # performance tracker

syntheses = ['reconstruct', 'sample', 'fix_latents', 'latent_activations']

for i in range(save_steps, train_steps + save_steps, save_steps):

    suffix = str(i)

    image_plot(tracker,
               models,
               data=data,
               suffix=suffix,
               syntheses=syntheses,
               n_rows=8,
               n_cols=8,
               n_pixels=0,
               spacing=0,
               count=1)