from data import DayNight from training import Results from results import image_plot from runjoint import models experiment_name = "daynight" train_steps = 100000 save_steps = 50000 data = DayNight() tracker = Results.load(experiment_name) syntheses = ['reconstruct', 'sample'] for i in range(save_steps, train_steps+save_steps, save_steps): suffix = str(i) image_plot(tracker, models, data=data, suffix=suffix, syntheses=syntheses, n_rows=3, n_cols=4, n_pixels=0, spacing=0, model_type='joint', count=10)
from runcolor import models experiment_name = "global_lossy_cifar" train_steps = 5000 save_steps = 5000 suffix = None data = CIFAR() # MNIST, CIFAR tracker = Results.load(experiment_name) # performance tracker syntheses = ['reconstruct', 'sample', 'fix_latents', 'latent_activations'] for i in range(save_steps, train_steps + save_steps, save_steps): suffix = str(i) image_plot(tracker, models, data=data, suffix=suffix, syntheses=syntheses, n_rows=8, n_cols=8, n_pixels=0, spacing=0, count=1)