Example #1
0
 def kmeans(self, x, df):
     for nc in att.NUMBER_CLUSTERS:
         for mi in att.MAX_ITERATIONS:
             for nr in att.NUMBER_INIT:
                 configuration, alg = clustering.kmeans(nc, nr, mi)
                 if results.path_exists(configuration) is False:
                     self.execute_clustering(alg, configuration, df, x)
Example #2
0
 def affinity_propagation(self, x, df):
     for mi in att.MAX_ITERATIONS:
         for nr in att.NUMBER_INIT:
             configuration, alg = clustering.affinity_propagation(
                 nr, mi, att.DAMPING)
             if results.path_exists(configuration) is False:
                 self.execute_clustering(alg, configuration, df, x)
Example #3
0
 def dbscan(self, x, df):
     for metric in att.METRIC:
         for eps in att.EPS:
             for min_samples in att.MIN_SAMPLES:
                 configuration, alg = clustering.dbscan(
                     metric, eps, min_samples)
                 if results.path_exists(configuration) is False:
                     self.execute_clustering(alg, configuration, df, x)
Example #4
0
 def spectral(self, x, df):
     for affinity in att.AFFINITY_SPECTRAL:
         for labels in att.ASSIGN_LABELS:
             for n_neighbors in att.NUMBER_NEIGHBORS:
                 for number_init in att.NUMBER_INIT:
                     configuration, alg = clustering.spectral_clustering(
                         affinity, labels, number_init, n_neighbors)
                     if results.path_exists(configuration) is False:
                         self.execute_clustering(alg, configuration, df, x)
Example #5
0
 def agglomerative(self, x, df):
     for nc in att.NUMBER_CLUSTERS:
         for affinity in att.METRIC:
             for linkage in att.LINKAGE:
                 if linkage != "ward" and affinity != "euclidean":
                     configuration, alg = clustering.agglomerative(
                         nc, affinity, linkage)
                 if results.path_exists(configuration) is False:
                     self.execute_clustering(alg, configuration, df, x)