Example #1
0
    def release_query_id_and_return_results(self, engine, query_id):
        """
            Instructs the backend to return the results of the query
            and then to release the query ID.
            Arguments:
                engine: backend engine to contact
                query_id: ID of the query
            Results:
                A List with all the results.
                It raises a ResultReadError if the results cannot be read.
        """
        backend_port = self.visor_opts.engines_dict[engine]['backend_port']
        ses = backend_client.Session(backend_port)

        # get ranking from backend
        rlist = ses.get_ranking(query_id)

        # Get all query results (as above) or just a subset.
        # Note that the number of results can also be restricted
        # in the backend. This last option seems better as it can
        # be adjusted PER engine
        #rsubset = ses.get_ranking_subset(query_id, 0, 5000)
        #rlist = rsubset[0]

        # release query id in backend
        ses.release_query_id(query_id)

        # check if something went wrong
        if isinstance(rlist, bool) and not rlist:
            raise errors.ResultReadError(
                'Could not read in results from backend')

        return rlist
Example #2
0
def _compute_feat(out_dict):
    """
        Performs the computation of features for one file.
        Arguments:
            out_dicts: Dictionary with at least the following entries:
                       'clean_fn': Path to input file for processing.
                       'feat_fn': Path to file where features are stored.
                       'backend_port': Communication port with the backend
                       'anno': 1 if the image is a positive training image, -1
                               if it is a negative training image, 0 otherwise.
                       'query_id': id of the query being executed.
                       'from_dataset': Boolean indicating whether the training image
                                       is part of the dataset or not.
                       'extra_params': Dictionary containing any other parameter that
                                       can be useful to the backend.
        Returns:
            It raises FeatureCompError is the backend reports something went
            wrong with the feature computation.
    """
    impath = out_dict['clean_fn']
    featpath = out_dict['feat_fn']

    ses = backend_client.Session(out_dict['backend_port'])

    is_symlink = os.path.islink(impath)
    if is_symlink:
        canonical_impath = os.path.realpath(impath)
    else:
        canonical_impath = impath

    is_symlink_feat = os.path.islink(featpath)
    if is_symlink_feat:
        canonical_featpath = os.path.realpath(featpath)
    else:
        canonical_featpath = featpath

    if out_dict['anno'] == 1:
        call_succeeded = ses.add_pos_trs(out_dict['query_id'],
                                         canonical_impath, canonical_featpath,
                                         out_dict['from_dataset'],
                                         out_dict['extra_params'])
    elif out_dict['anno'] == -1:
        call_succeeded = ses.add_neg_trs(out_dict['query_id'],
                                         canonical_impath, canonical_featpath,
                                         out_dict['from_dataset'],
                                         out_dict['extra_params'])
    else:
        call_succeeded = True

    if not call_succeeded:
        raise models.errors.FeatureCompError('Failed computing features of ' + canonical_impath)

    if is_symlink:
        sys.stdout.write('computed features for: ' + impath +
                         ' (=>' + canonical_impath + ')\n')
    else:
        sys.stdout.write('computed features for: ' + impath + '\n')
Example #3
0
 def is_backend_available(self):
     """
         Checks whether the backend engines are running or not.
         Returns:
             True, only if ALL configured backend engines are reachable.
             It returns False otherwise.
     """
     backends_available = len(self.opts.engines_dict) > 0
     if backends_available:
         for engine in self.opts.engines_dict:
             ses = backend_client.Session(
                 self.opts.engines_dict[engine]['backend_port'])
             backends_available = backends_available and ses.self_test()
     return backends_available
Example #4
0
 def _save_annotations(self, query, fname, query_id):
     """
         Instructs the backend to save the annotations
         of a query.
         Arguments:
             query: query in dictionary form.
             query_id: id of the query.
             fname: Full path to the annotations file.
         Results:
             It raises a AnnoSaveLoadError in case of error.
     """
     backend_port = self.visor_opts.engines_dict[
         query['engine']]['backend_port']
     ses = backend_client.Session(backend_port)
     if not ses.save_annotations(query_id, fname):
         raise errors.AnnoSaveLoadError('Could not save annotations to %s' %
                                        fname)
Example #5
0
 def _load_annotations_and_trs(self, query, fname, query_id=None):
     """
         Instructs the backend to load the annotations
         of a query.
         Arguments:
             query: query in dictionary form.
             query_id: id of the query.
             fname: Full path to the annotations file.
         Results:
            True on success, False otherwise.
     """
     if not os.path.isfile(fname):
         return False
     backend_port = self.visor_opts.engines_dict[
         query['engine']]['backend_port']
     ses = backend_client.Session(backend_port)
     loaded = ses.load_annotations_and_trs(query_id, fname)
     #if not loaded:
     #    raise errors.AnnoSaveLoadError('Could not get annotations from %s' % fname)
     return loaded
Example #6
0
    def get_query_id(self, engine, dsetname):
        """
            Contacts the backend requesting a new Query ID.
            Returns a new unique query id which can be used with a
            subsequent call to process.
            Arguments:
                engine: backend engine to contact
                dsetname: dataset used for the query
            Returns:
                A positive integer number corresponding to the new query ID.
                It raises a QueryIdError if the ID is negative or 0.
        """
        ses = backend_client.Session(
            self.visor_opts.engines_dict[engine]['backend_port'])
        query_id = ses.get_query_id(dsetname)

        if query_id <= 0:
            raise errors.QueryIdError(
                'Could not get a Query ID from VISOR backend')

        return query_id
Example #7
0
 def _load_classifier(self, query, fname, query_id):
     """
         Instructs the backend to load the classifier
         for the query.
         Arguments:
             query: query in dictionary form.
             query_id: id of the query.
             fname: Full path to the classifier file.
         Results:
             True on success.
             It raises a ClassifierSaveLoadError in case of error.
     """
     if not os.path.isfile(fname):
         return False
     backend_port = self.visor_opts.engines_dict[
         query['engine']]['backend_port']
     ses = backend_client.Session(backend_port)
     if not ses.load_classifier(query_id, fname):
         raise errors.ClassifierSaveLoadError(
             'Could not load classifier from %s' % fname)
     return True
Example #8
0
 def _get_annotations(self, query, fname, query_id=None):
     """
         Retrieved the annotations of a query from the backend.
         Arguments:
             query: query in dictionary form.
             query_id: id of the query.
             fname: Full path to the annotations file.
         Results:
             On success, it returns a list of dictionaries with the
             annotations and paths to the training images.
             It raises a AnnoSaveLoadError in case of error.
     """
     if not os.path.isfile(fname):
         return []
     backend_port = self.visor_opts.engines_dict[
         query['engine']]['backend_port']
     ses = backend_client.Session(backend_port)
     annos = ses.get_annotations(query_id, fname)
     if not annos:
         raise errors.AnnoSaveLoadError(
             'Could not get annotations from %s' % fname)
     return annos
Example #9
0
    def process(self, query, query_id, shared_vars, opts, user_ses_id=None):
        """
            Executes a query using the VISOR backend
            Arguments:
                query: query in dictionary form.
                query_id: ID of the query
                shared_vars: holder of global shared variables
                opts: current configuration of options for the visor engine
                user_ses_id: user session id
            Returns:
                'None' in case of success, as the results are saved to the caches.
                It can raise several exceptions, depending on the error:
                    ValueError: In the presence of incorrect options
                    ClassifierTrainError: In case the training fails
                    Exception: In case of any other error
        """
        if not isinstance(opts, param_sets.VisorEngineProcessOpts):
            raise ValueError(
                'opts must be of type param_sets.VisorEngineProcessOpts')

        backend_port = self.visor_opts.engines_dict[
            query['engine']]['backend_port']
        ses = backend_client.Session(backend_port)

        try:
            # check if classifier has been trained and saved to file or not
            if not self.compdata_cache.load_classifier(
                    query, query_id=query_id, user_ses_id=user_ses_id):
                # if not try loading in precomputed annotations and features
                if not self.compdata_cache.load_annotations_and_trs(
                        query, query_id=query_id, user_ses_id=user_ses_id):
                    # if both classifier and annotations could not be loaded, start
                    # computation from scratch now...

                    print('Getting query handler for Query ID: %d' % query_id)
                    query_handler = factory.get_query_handler(
                        query, query_id, backend_port, self.compdata_cache,
                        opts)
                    print('Computing features for Query ID: %d' % query_id)
                    shared_vars.exectime_processing = query_handler.compute_feats(
                        shared_vars)

                    self.compdata_cache.save_annotations(
                        query, query_id=query_id, user_ses_id=user_ses_id)
                # train classifier now if it hasn't been already
                print('Training classifier for Query ID: %d' % query_id)
                shared_vars.state = States.training
                with timing.TimerBlock() as timer:
                    anno_path = None
                    # if the query is in the exclude list, specify the annotation path as it can be used in the backend
                    if self.result_cache[
                            query['engine']].query_in_exclude_list(
                                query, ses_id=user_ses_id):
                        anno_path = self.compdata_cache._get_annotations_fname(
                            query)
                    error = ses.train(query_id, anno_path)
                    if error:
                        if isinstance(error, str):
                            error = error.encode('ascii')
                        raise errors.ClassifierTrainError(
                            'Could not train classifier. Backend response: ' +
                            str(error))
                shared_vars.exectime_training = timer.interval

                # and save it to file
                self.compdata_cache.save_classifier(query,
                                                    query_id=query_id,
                                                    user_ses_id=user_ses_id)
            else:
                print('Loaded classifier from file for Query ID: %d' %
                      query_id)

            # compute ranking

            do_regular_rank = False

            if opts.rf_rank_type == RfRankTypes.full:
                # set flag to do regular ranking
                do_regular_rank = True

            elif opts.rf_rank_type == RfRankTypes.topn:
                if 'prev_qsid' in query:
                    # reranking of top n results from previous query

                    prev_qsid = query['prev_qsid']
                    topn = opts.rf_rank_topn
                    print(
                        'Computing reranking of top %d results from previous query (%s) for Query ID %d'
                        % (topn, prev_qsid, query_id))
                    # Look up ranking list for previous query (by query session ID)
                    prev_rlist = self.result_cache[
                        query['engine']].get_results_from_query_ses_id(
                            prev_qsid, user_ses_id)
                    # extract dataset string IDs for top N results from the ranking list
                    subset_ids = [
                        ritem['path'] for ritem in prev_rlist[0:topn]
                    ]

                    with timing.TimerBlock() as timer:
                        ses.rank(query_id, subset_ids)
                    shared_vars.exectime_ranking = timer.interval
                else:
                    # do regular rank if no previous query session id was specified
                    do_regular_rank = True

            else:
                # unrecognised ranking type
                raise ValueError(
                    'Unrecognised value for rf_rank_type parameter')

            if do_regular_rank:
                # regular ranking
                print('Computing ranking for Query ID: %d' % query_id)
                shared_vars.state = States.ranking
                with timing.TimerBlock() as timer:
                    ses.rank(query_id)
                shared_vars.exectime_ranking = timer.interval

            # mark results as ready
            shared_vars.state = States.results_ready
        except Exception as e:
            # determine if on cache exclude list
            excl_query = self.result_cache[
                query['engine']].query_in_exclude_list(query,
                                                       ses_id=user_ses_id)
            # do the clean up below only if the query is not in the excluded list, to avoid removing previous valid results by mistake
            if not excl_query:
                # clear cache before leaving the method
                self.compdata_cache.delete_compdata(query)
                self.result_cache[query['engine']].delete_results(
                    query, for_all_datasets=True)
            # logging
            print(
                'Unexpected error occurred while processing Query ID %d: %s' %
                (query_id, str(e)))
            traceback.print_exception(sys.exc_info()[0],
                                      sys.exc_info()[1],
                                      sys.exc_info()[2],
                                      limit=2)
            shared_vars.state = States.fatal_error_or_socket_timeout
            shared_vars.err_msg = str(e)
            print(traceback.format_exc())
            raise e