Example #1
0
def imagetestplt(thetainput, doubleopponencyinput):
    """Summary
    Display function that generates the final output images using MatplotLib windows
    Args:
        thetainput (float): a threshold value for perception
        doubleopponencyinput (bool): A boolean toggle for changing the opponency mode
    """
    theta = thetainput
    rgcMode = doubleopponencyinput

    C = retina.sample(img, x, y, coeff[i], loc[i],
                      rgb=True)  # CENTRE(sharp retina)
    S = retina.sample(img, x, y, dcoeff[i], dloc[i],
                      rgb=True)  # SURROUND(blurred retina)

    if rgcMode == 0:
        pV, nV = rgc.opponency(C, S, theta)
    else:
        pV, nV = rgc.doubleopponency(C, S, theta)

    rIntensity, cIntensity = showNonOpponency(C, theta)
    # Construct window plots
    plt.subplot(3, 1, 1), plt.imshow(cv2.cvtColor(
        img, cv2.COLOR_BGR2RGB)), plt.title('Original test image')
    plt.xticks([]), plt.yticks([])
    plt.subplot(3, 1, 2), plt.imshow(
        cv2.cvtColor(rIntensity, cv2.COLOR_BGR2RGB)), plt.title(
            'Backprojected R+G Intensity Response')
    plt.xticks([]), plt.yticks([])
    plt.subplot(3, 1, 3), plt.imshow(
        cv2.cvtColor(
            cIntensity,
            cv2.COLOR_BGR2RGB)), plt.title('Cortical R+G Intensity Response')
    plt.xticks([]), plt.yticks([])
    # format float to string
    thetastring = "%.2f" % theta
    plt.suptitle('Rectified DoG Intensity Images. Threshold:' + thetastring,
                 fontsize=16)
    plt.show()

    #Generate backprojected images
    if showInverse:
        rOpponent = showBPImg(pV, nV)
        plt.imshow(cv2.cvtColor(rOpponent, cv2.COLOR_BGR2RGB)), plt.title(
            'Backprojected Opponent Cells Output')
        plt.xticks([]), plt.yticks([])
        plt.show()
    # Cortex
    if showCortex:
        cOpponent = showCortexImg(pV, nV)
        plt.imshow(cv2.cvtColor(
            cOpponent,
            cv2.COLOR_BGR2RGB)), plt.title('Cortex Opponent Cells Output')
        plt.xticks([]), plt.yticks([])
        plt.show()
Example #2
0
def speedup(loc, coeff, img, rgb, show_res):
    '''
    This test measures the performance of the two implementation
    from initialisation to the end of the cortical transform
    '''
    init_p = time.time()
    GI = retina.gauss_norm_img(int(img.shape[1] / 2), int(img.shape[0] / 2),
                               coeff, loc, img.shape, rgb)

    init_c = time.time()
    ret = retina_cuda.create_retina(
        loc, coeff, img.shape, (int(img.shape[1] / 2), int(img.shape[0] / 2)))

    sample_p = time.time()
    V_p = retina.sample(img, img.shape[1] / 2, img.shape[0] / 2, coeff, loc,
                        rgb)

    sample_c = time.time()
    V_c = ret.sample(img)

    invert_p = time.time()
    inv_p = retina.inverse(V_p, img.shape[1] / 2, img.shape[0] / 2, coeff, loc,
                           GI, img.shape, rgb)

    invert_c = time.time()
    inv_c = ret.inverse(V_c)
    retina_end = time.time()

    cort_init_p = time.time()
    L, R = cortex.LRsplit(loc)
    L_loc, R_loc = cortex.cort_map(L, R)
    L_loc, R_loc, G, cort_size = cortex.cort_prepare(L_loc, R_loc)

    cort_init_c = time.time()
    cort = cortex_cuda.create_cortex_from_fields(loc, rgb=rgb)

    cort_img_p = time.time()
    l_p, r_p = cortex.cort_img(V_p, L, L_loc, R, R_loc, cort_size, G)

    cort_img_c = time.time()
    l_c = cort.cort_image_left(V_c)
    r_c = cort.cort_image_right(V_c)
    cort_end = time.time()

    print '%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,' % (init_c - init_p, sample_p - init_c, sample_c - sample_p, \
                                  invert_p - sample_c, invert_c - invert_p, retina_end - invert_c,\
                                  cort_init_c - cort_init_p, cort_img_p - cort_init_c, cort_img_c - cort_img_p, cort_end - cort_img_c)

    if show_res:
        cv2.namedWindow("inverse CUDA", cv2.WINDOW_NORMAL)
        cv2.imshow("inverse CUDA", inv_c)
        cv2.namedWindow("inverse Piotr", cv2.WINDOW_NORMAL)
        cv2.imshow("inverse Piotr", inv_p)
        c_c = np.concatenate((np.rot90(l_c), np.rot90(r_c, k=3)), axis=1)
        c_p = np.concatenate((np.rot90(l_p), np.rot90(r_p, k=3)), axis=1)
        cv2.namedWindow("cortex CUDA", cv2.WINDOW_NORMAL)
        cv2.imshow("cortex CUDA", c_c)
        cv2.namedWindow("cortex Piotr", cv2.WINDOW_NORMAL)
        cv2.imshow("cortex Piotr", c_p)
Example #3
0
def showNonOpponency(C, theta):
    """Summary
    This function encapsulates the routine to generate backprojected and cortical views for 
    the magnocellular pathway retinal ganglion cells
    Args:
        C (vector): The sharp retina is passed to the function
        theta (float): A threshold value is passed to the function
    
    Returns:
        merged: Return a merged image of the backprojected view as a numpy image array
        mergecort: Return a merged image of the cortical view as a numpy image array
    """
    GI = retina.gauss_norm_img(x,
                               y,
                               dcoeff[i],
                               dloc[i],
                               imsize=imgsize,
                               rgb=False)
    # Sample using the other recepetive field, note there is no temporal response with still images
    S = retina.sample(img, x, y, dcoeff[i], dloc[i], rgb=True)
    #backproject the imagevectors
    ncentreV, nsurrV = rgc.nonopponency(C, S, theta)
    ninverse = retina.inverse(ncentreV,
                              x,
                              y,
                              dcoeff[i],
                              dloc[i],
                              GI,
                              imsize=imgsize,
                              rgb=True)
    ninv_crop = retina.crop(ninverse, x, y, dloc[i])
    ninverse2 = retina.inverse(nsurrV,
                               x,
                               y,
                               dcoeff[i],
                               dloc[i],
                               GI,
                               imsize=imgsize,
                               rgb=True)
    ninv_crop2 = retina.crop(ninverse2, x, y, dloc[i])
    # place descriptive text onto generated images
    cv2.putText(ninv_crop, "R+G + ", (xx, yy), font, 1, (255, 255, 255), 2)
    cv2.putText(ninv_crop2, "R+G - ", (xx, yy), font, 1, (255, 255, 255), 2)
    merged = np.concatenate((ninv_crop, ninv_crop2), axis=1)

    # create cortical maps of the imagevectors
    lposnon, rposnon = cortex.cort_img(ncentreV, L, L_loc, R, R_loc, cort_size,
                                       G)
    lnegnon, rnegnon = cortex.cort_img(nsurrV, L, L_loc, R, R_loc, cort_size,
                                       G)
    pos_cort_img = np.concatenate((np.rot90(lposnon), np.rot90(rposnon, k=3)),
                                  axis=1)
    neg_cort_img = np.concatenate((np.rot90(lnegnon), np.rot90(rnegnon, k=3)),
                                  axis=1)
    mergecort = np.concatenate((pos_cort_img, neg_cort_img), axis=1)
    return merged, mergecort
Example #4
0
def imagetest(thetainput, doubleopponencyinput):
    """Summary
    Display function that generates the final output images using opencv windows
    Args:
        thetainput (float): a threshold value for perception
        doubleopponencyinput (bool): A boolean toggle for changing the opponency mode
    """
    theta = thetainput
    rgcMode = doubleopponencyinput

    C = retina.sample(img, x, y, coeff[i], loc[i], rgb=True)  # CENTRE
    S = retina.sample(img, x, y, dcoeff[i], dloc[i], rgb=True)  # SURROUND

    if rgcMode == 0:
        pV, nV = rgc.opponency(C, S, theta)
    else:
        pV, nV = rgc.doubleopponency(C, S, theta)
    cv2.namedWindow("Input", cv2.WINDOW_NORMAL)
    cv2.imshow("Input", img)
    rIntensity, cIntensity = showNonOpponency(C, theta)
    cv2.namedWindow("Intensity Responses", cv2.WINDOW_NORMAL)
    cv2.imshow("Intensity Responses", rIntensity)
    cv2.namedWindow("Intensity Responses Cortex", cv2.WINDOW_NORMAL)
    cv2.imshow("Intensity Responses Cortex", cIntensity)
    cv2.waitKey(0)
    #Generate backprojected images
    if showInverse:
        rOpponent = showBPImg(pV, nV)
        cv2.namedWindow("Backprojected Opponent Cells Output",
                        cv2.WINDOW_NORMAL)
        cv2.imshow("Backprojected Opponent Cells Output", rOpponent)
        cv2.waitKey(0)
    # Cortex
    if showCortex:
        cOpponent = showCortexImg(pV, nV)
        cv2.namedWindow("Cortex Opponent Cells Output", cv2.WINDOW_NORMAL)
        cv2.imshow("Cortex Opponent Cells Output", cOpponent)
        cv2.waitKey(0)
Example #5
0
def showNonOpponency(C, theta):
    """Summary
    This function encapsulates the routine to generate backprojected and cortical views for 
    the magnocellular pathway retinal ganglion cells
    Args:
        C (vector): The sharp retina is passed to the function
        theta (float): A threshold value is passed to the function
    
    Returns:
        merged: Return a merged image of the backprojected view as a numpy image array
        mergecort: Return a merged image of the cortical view as a numpy image array
    """
    # Sample using the other recepetive field, but with a temporally different image, lateimg
    S = retina.sample(lateimg, x, y, dcoeff[i], dloc[i], rgb=True)

    ncentreV, nsurrV = rgc.nonopponency(C, S, theta)
    ninverse = retina.inverse(ncentreV,
                              x,
                              y,
                              dcoeff[i],
                              dloc[i],
                              GI,
                              imsize=imgsize,
                              rgb=False)
    ninv_crop = retina.crop(ninverse, x, y, dloc[i])
    ninverse2 = retina.inverse(nsurrV,
                               x,
                               y,
                               dcoeff[i],
                               dloc[i],
                               GI,
                               imsize=imgsize,
                               rgb=False)
    ninv_crop2 = retina.crop(ninverse2, x, y, dloc[i])
    merged = np.concatenate((ninv_crop, ninv_crop2), axis=1)

    lposnon, rposnon = cortex.cort_img(ncentreV, L, L_loc, R, R_loc, cort_size,
                                       G)
    lnegnon, rnegnon = cortex.cort_img(nsurrV, L, L_loc, R, R_loc, cort_size,
                                       G)
    pos_cort_img = np.concatenate((np.rot90(lposnon), np.rot90(rposnon, k=3)),
                                  axis=1)
    neg_cort_img = np.concatenate((np.rot90(lnegnon), np.rot90(rnegnon, k=3)),
                                  axis=1)
    mergecort = np.concatenate((pos_cort_img, neg_cort_img), axis=1)

    return merged, mergecort
Example #6
0
def preview():
    stdimg_dir = os.getcwd() + os.sep + 'testimage\\'
    print "Using " + os.listdir(stdimg_dir)[0]

    name = os.listdir(stdimg_dir)[0]

    standard_image = cv2.imread(stdimg_dir + name, )
    img = cv2.normalize(standard_image.astype('float'), None, 0.0, 1.0,
                        cv2.NORM_MINMAX)
    img = cv2.cvtColor(standard_image, cv2.COLOR_BGR2GRAY)
    x, y = img.shape[1] / 2, img.shape[0] / 2
    size = img.shape

    oz_V = retina.sample(img, x, y, ozimek_coeff, ozimek_loc, rgb=False)
    oz_GI = retina.gauss_norm_img(x, y, ozimek_coeff, ozimek_loc, imsize=size)
    oz_I = retina.inverse(oz_V,
                          x,
                          y,
                          ozimek_coeff,
                          ozimek_loc,
                          oz_GI,
                          imsize=size,
                          rgb=False)
    oz_I_crop = retina.crop(oz_I, x, y, ozimek_loc)
    oz_GI_crop = retina.crop(oz_GI, x, y, ozimek_loc)

    # test application of retinal receptive field
    plt.figure(figsize=(6, 6), num="Test application of retinal field")
    plt.axis('off')
    plt.imshow(oz_I_crop, cmap='gray')
    plt.show()

    #heatmap of retinal receptive field
    plt.figure(figsize=(6, 6), num="Heatmap of retina")
    plt.axis('off')
    plt.imshow(oz_GI_crop, cmap='RdBu')
    plt.show()
Example #7
0
# repeat for every new frame
while True:
    ret, img = cap.read()
    ret, lateimg = cap.read()  # for temporal responses
    if ret is True:
        # get image frame properties
        x = int(img.shape[1] / 2)
        y = int(img.shape[0] / 2)
        imgsize = (img.shape[0], img.shape[1])

        theta = cv2.getTrackbarPos('theta', 'Input') / 100.0
        rgcMode = cv2.getTrackbarPos(switch, 'Input')

        # sample images
        C = retina.sample(img, x, y, coeff[i], loc[i],
                          rgb=True)  # CENTRE(sharp retina)
        S = retina.sample(img, x, y, dcoeff[i], dloc[i],
                          rgb=True)  # SURROUND(blurred retina)

        # generate rectified imagevectors based on the type of opponency
        if rgcMode == 0:
            pV, nV = rgc.opponency(C, S, theta)
        else:
            pV, nV = rgc.doubleopponency(C, S, theta)

        # Display functions are called
        cv2.imshow("Input", img)

        rIntensity, cIntensity = showNonOpponency(C, theta)
        cv2.imshow("Intensity Responses", rIntensity)
        cv2.namedWindow("Intensity Responses Cortex", cv2.WINDOW_NORMAL)
Example #8
0
def correctness_test(loc, coeff, cap, rgb=False):
    '''
    CUDA code uses the minimal initialisation from the host,
    all tracatable values are computed on the GPU
    Get an image from the camera, generate inverse and cortical image 
    with both implementation and subtract the results
    '''
    r, img = cap.read()
    if not rgb: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # create CUDA objects to pass to evaluation
    ret = retina_cuda.create_retina(
        loc, coeff, img.shape, (int(img.shape[1] / 2), int(img.shape[0] / 2)),
        None)
    cort = cortex_cuda.create_cortex_from_fields(loc, rgb=rgb)

    while ord('q') != cv2.waitKey(10):
        r, img = cap.read()
        if not rgb: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        if r:
            '''
            Sample the image img with CUDA retina ret, inverse transform it with ret and 
            create the cortical image with CUDA cortex cort
            Sample and generate retina and cortical images from img with Piotrs's code
            Visually compare the results by showing the subtraction of the generatd images
            '''
            V_c = ret.sample(img)  # sample with CUDA
            inv_c = ret.inverse(V_c)  # inverse with CUDA

            l_c = cort.cort_image_left(V_c)  # left cortical image CUDA
            r_c = cort.cort_image_right(V_c)  # right cortical image CUDA
            c_c = np.concatenate(
                (np.rot90(l_c), np.rot90(r_c, k=3)),
                axis=1)  #concatenate the results into one image

            # create Piotr's retina and cortical images

            GI = retina.gauss_norm_img(int(img.shape[1] / 2),
                                       int(img.shape[0] / 2), coeff, loc,
                                       img.shape, rgb)
            L, R = cortex.LRsplit(loc)
            L_loc, R_loc = cortex.cort_map(L, R)
            L_loc, R_loc, G, cort_size = cortex.cort_prepare(L_loc, R_loc)
            V_p = retina.sample(img, img.shape[1] / 2, img.shape[0] / 2, coeff,
                                loc, rgb)
            inv_p = retina.inverse(V_p, img.shape[1] / 2, img.shape[0] / 2,
                                   coeff, loc, GI, img.shape, rgb)
            l_p, r_p = cortex.cort_img(V_p, L, L_loc, R, R_loc, cort_size, G)
            c_p = np.concatenate((np.rot90(
                l_p[:l_c.shape[0], :]), np.rot90(r_p[:r_c.shape[0], :], k=3)),
                                 axis=1)

            # show CUDA results
            cv2.namedWindow("inverse CUDA", cv2.WINDOW_NORMAL)
            cv2.imshow("inverse CUDA", inv_c)
            cv2.namedWindow("cortex CUDA", cv2.WINDOW_NORMAL)
            cv2.imshow("cortex CUDA", c_c)

            # show Piotr's results
            cv2.namedWindow("inverse Piotr", cv2.WINDOW_NORMAL)
            cv2.imshow("inverse Piotr", inv_p)
            cv2.namedWindow("cortex Piotr", cv2.WINDOW_NORMAL)
            cv2.imshow("cortex Piotr", c_p)

            # show the difference of the images
            cv2.namedWindow("inverse diff", cv2.WINDOW_NORMAL)
            cv2.imshow("inverse diff", np.power((inv_c - inv_p), 2) * 255)
            cv2.namedWindow("cortex diff", cv2.WINDOW_NORMAL)
            cv2.imshow("cortex diff", np.power((c_c - c_p), 2) * 255)
Example #9
0
# repeat for every new frame
while True:
    ret, img = cap.read()
    ret, lateimg = cap.read()
    if ret is True:
        # get image frame properties
        x = int(img.shape[1] / 2)
        y = int(img.shape[0] / 2)
        imgsize = (img.shape[0], img.shape[1])

        theta = cv2.getTrackbarPos('theta', 'Input') / 100.0
        rgcMode = cv2.getTrackbarPos(switch, 'Input')
        # get index of the species type
        t = cv2.getTrackbarPos(species, 'Input')
        # sample images
        C = retina.sample(img, x, y, coeff[i], loc[i], rgb=True)  # CENTRE
        S = retina.sample(img, x, y, dcoeff[i], dloc[i], rgb=True)  # SURROUND

        # generate rectified imagevectors based on the type of opponency
        if rgcMode == 0:
            pV, nV = rgc.opponency(C, S, theta)
        else:
            pV, nV = rgc.doubleopponency(C, S, theta)

        # Display functions
        cv2.imshow("Input", img)

        rIntensity, cIntensity = showNonOpponency(C, theta)
        cv2.imshow("Intensity Responses", rIntensity)
        cv2.namedWindow("Intensity Responses Cortex", cv2.WINDOW_NORMAL)
        cv2.imshow("Intensity Responses Cortex", cIntensity)