Example #1
0
def test_sliding2d():
    """
    Input: A (padded) valid Tensor for slides.  [width, height]
    width_idx
    height_idx
    stride

    Output: A sliding Tensor  [K, K], K = kernel_size
    """

    n_samples = 2
    width = 4
    height = 5

    a = Tensor(np.random.randn(n_samples, width, height), requires_grad=True)
    a.print()

    kernel_size = 2 # Symmetric Squared
    stride = 1

    width_idx = 0
    height_idx = 1

    b = slide.Sliding2D(width_idx=width_idx,
                        height_idx=height_idx,
                        kernel_size=kernel_size,
                        stride=stride)(a)
    b.print()
    b.backward()
    print(a.grad)
Example #2
0
def test_padding2d():

    n_samples = 4
    width = 2
    height = 3

    a = Tensor(np.random.randn(n_samples, width, height), requires_grad=True)
    a.print()

    padding = 1
    b = pad.Padding2D(padding=padding)(a)
    b.print()

    b.backward()
    print(a.grad)
Example #3
0
def test_mse_loss():

    n_samples = 5
    n_output = 4

    Y = Tensor(np.random.randn(n_samples, n_output), name='Y')
    Y_pred = Tensor(np.random.randn(n_samples, n_output),
                    requires_grad=True,
                    name='Y_pred')

    loss_ = mse.MSELoss('loss')(Y, Y_pred)

    Y.print()
    Y_pred.print()

    loss_.print()
    loss_.backward()

    print(Y_pred.grad)