def testOutputSameFile(imgfile): # Now test the ratapplier inRats = ratapplier.RatAssociations() outRats = ratapplier.RatAssociations() controls = ratapplier.RatApplierControls() inRats.img = ratapplier.RatHandle(imgfile) outRats.img = inRats.img controls.setBlockLength(5) ratapplier.apply(myFunc, inRats, outRats, controls=controls) col = rat.readColumn(imgfile, 'Value') colSqrd = rat.readColumn(imgfile, 'sqrd') ok = True if (col**2 != colSqrd).any(): riostestutils.report(TESTNAME, "sqrd incorrect, in sameFile output") ok = False return ok
def testNewRat(imgfile4): makeTestFile(imgfile4, withRat=False) inRats = ratapplier.RatAssociations() outRats = ratapplier.RatAssociations() controls = ratapplier.RatApplierControls() controls.setRowCount(256) outRats.outimg = ratapplier.RatHandle(imgfile4) controls.setBlockLength(3) ratapplier.apply(myFuncNewRat, inRats, outRats, controls=controls) col = rat.readColumn(imgfile4, 'newCol') colIntended = numpy.arange(256, dtype=numpy.uint32) ok = (col == colIntended).all() if not ok: riostestutils.report(TESTNAME, "New RAT incorrect: %s, %s" % (col, colIntended)) return ok
def testDifferentOutput(imgfile, imgfile2): makeTestFile(imgfile2, withRat=False) inRats = ratapplier.RatAssociations() outRats = ratapplier.RatAssociations() controls = ratapplier.RatApplierControls() inRats.img = ratapplier.RatHandle(imgfile) outRats.outimg = ratapplier.RatHandle(imgfile2) controls.setBlockLength(3) ratapplier.apply(myFuncDiffFile, inRats, outRats, controls=controls) col = rat.readColumn(imgfile, 'Value') colSqrd = rat.readColumn(imgfile2, 'sqrd') ok = True if (col**2 != colSqrd).any(): riostestutils.report(TESTNAME, "sqrd incorrect, in differentFile output") ok = False return ok
def testReduceRat(imgfile, imgfile3): """ This test creates a new output image, with all odd pixel values replaced with the even number above it. The RAT must then be copied across with the same reduction performed. In this case, only the even numbered rows are written """ # First we copy the raster, with the reduction of pixel values infiles = applier.FilenameAssociations() outfiles = applier.FilenameAssociations() infiles.inimg = imgfile outfiles.outimg = imgfile3 # Make sure we use a format which actually supports RAT's controls = applier.ApplierControls() controls.setOutputDriverName('HFA') applier.apply(rasterReduceFunc, infiles, outfiles, controls=controls) # Now use ratapplier to reduce the RAT inRats = ratapplier.RatAssociations() outRats = ratapplier.RatAssociations() controls = ratapplier.RatApplierControls() inRats.img = ratapplier.RatHandle(imgfile) outRats.outimg = ratapplier.RatHandle(imgfile3) controls.setBlockLength(3) ratapplier.apply(ratReduceFunc, inRats, outRats, controls=controls) col = rat.readColumn(imgfile, 'Value') colEven = col[::2] colReduced = rat.readColumn(imgfile3, 'Value')[:len(colEven)] ok = True if (colEven != colReduced).any(): riostestutils.report( TESTNAME, "Reduced RAT incorrect: %s, %s" % (colEven, colReduced)) ok = False return ok
def classifyWithinRATTiled(clumpsImg, classesIntCol, classesNameCol, variables, classifier=RandomForestClassifier(n_estimators=100, max_features=3, oob_score=True, n_jobs=-1), outColInt="OutClass", outColStr="OutClassName", roiCol=None, roiVal=1, classColours=None, scaleVarsRange=False, justFit=False): """ A function which will perform a classification within the RAT using a classifier from scikit-learn using the rios ratapplier interface allowing very large RATs to be processed. :param clumpsImg: is the clumps image on which the classification is to be performed :param classesIntCol: is the column with the training data as int values :param classesNameCol: is the column with the training data as string class names :param variables: is an array of column names which are to be used for the classification :param classifier: is an instance of a scikit-learn classifier (e.g., RandomForests which is Default) :param outColInt: is the output column name for the int class representation (Default: 'OutClass') :param outColStr: is the output column name for the class names column (Default: 'OutClassName') :param roiCol: is a column name for a column which specifies the region to be classified. If None ignored (Default: None) :param roiVal: is a int value used within the roiCol to select a region to be classified (Default: 1) :param classColours: is a python dict using the class name as the key along with arrays of length 3 specifying the RGB colours for the class. :param scaleVarsRange: will rescale each variable independently to a range of 0-1 (default: False). :param justFit: is a boolean specifying that the classifier should just be fitted to the data and not applied (Default: False; i.e., apply classification) Example:: from sklearn.ensemble import ExtraTreesClassifier from rsgislib.classification import classratutils classifier = ExtraTreesClassifier(n_estimators=100, max_features=3, n_jobs=-1, verbose=0) classColours = dict() classColours['Forest'] = [0,138,0] classColours['NonForest'] = [200,200,200] variables = ['GreenAvg', 'RedAvg', 'NIR1Avg', 'NIR2Avg', 'NDVI'] classifyWithinRATTiled(clumpsImg, classesIntCol, classesNameCol, variables, classifier=classifier, classColours=classColours) # With using range scaling. classifyWithinRATTiled(clumpsImg, classesIntCol, classesNameCol, variables, classifier=classifier, classColours=classColours, scaleVarsRange=True) """ # Check gdal is available if not haveGDALPy: raise Exception( "The GDAL python bindings required for this function could not be imported\n\t" + gdalErr) # Check numpy is available if not haveNumpy: raise Exception( "The numpy module is required for this function could not be imported\n\t" + numErr) # Check rios rat is available if not haveRIOSRat: raise Exception( "The RIOS rat tools are required for this function could not be imported\n\t" + riosRatErr) # Check scikit-learn RF is available if not haveSKLearnRF: raise Exception( "The scikit-learn random forests tools are required for this function could not be imported\n\t" + sklearnRFErr) # Check scikit-learn pre-processing is available if not haveSKLearnPreProcess: raise Exception( "The scikit-learn pre-processing tools are required for this function could not be imported\n\t" + sklearnPreProcessErr) ratDataset = gdal.Open(clumpsImg, gdal.GA_Update) # Read in training classes classesInt = rat.readColumn(ratDataset, classesIntCol) classesStr = rat.readColumn(ratDataset, classesNameCol) ratDataset = None validClassStr = classesStr[classesInt > 0] validClassInt = classesInt[classesInt > 0] #print(validClassInt.shape) classNames = numpy.unique(validClassStr) classes = numpy.zeros_like(classNames, dtype=numpy.int16) i = 0 classNameIDs = dict() for className in classNames: classNameStr = str(className.decode()) if not classNameStr is '': #print(validClassInt[validClassStr == className]) classes[i] = validClassInt[validClassStr == className][0] classNameIDs[classNameStr] = classes[i] #print("Class \'" + classNameStr + "\' has numerical " + str(classes[i])) i = i + 1 trainLen = validClassInt.shape[0] numVars = len(variables) #print("Create numpy {} x {} array for training".format(trainLen, numVars)) trainData = numpy.zeros((trainLen, numVars), numpy.float64) in_rats = ratapplier.RatAssociations() out_rats = ratapplier.RatAssociations() in_rats.inrat = ratapplier.RatHandle(clumpsImg) otherargs = ratapplier.OtherArguments() otherargs.vars = variables otherargs.classIntCol = classesIntCol otherargs.trainData = trainData otherargs.trainDataOff = 0 print("Extract Training Data") ratapplier.apply(_extractTrainDataFromRAT, in_rats, out_rats, otherargs=otherargs, controls=None) print("100%") validClassInt = validClassInt[numpy.isfinite(trainData).all(axis=1)] validClassStr = validClassStr[numpy.isfinite(trainData).all(axis=1)] trainData = trainData[numpy.isfinite(trainData).all(axis=1)] print("Training data size: {} x {}".format(trainData.shape[0], trainData.shape[1])) print('Training Classifier') classifier.fit(trainData, validClassInt) print("Completed") print('Calc Classifier Accuracy') accVal = classifier.score(trainData, validClassInt) print('Classifier Score = {}'.format(round(accVal * 100, 2))) if not justFit: print("Apply Classifier") in_rats = ratapplier.RatAssociations() out_rats = ratapplier.RatAssociations() in_rats.inrat = ratapplier.RatHandle(clumpsImg) out_rats.outrat = ratapplier.RatHandle(clumpsImg) otherargs = ratapplier.OtherArguments() otherargs.vars = variables otherargs.classifier = classifier otherargs.outColInt = outColInt otherargs.outColStr = outColStr otherargs.roiCol = roiCol otherargs.roiVal = roiVal otherargs.classColours = classColours otherargs.classNameIDs = classNameIDs ratapplier.apply(_applyClassifier, in_rats, out_rats, otherargs=otherargs, controls=None) print("100%")
#!/usr/bin/env python import argparse from rios import ratapplier import numpy def classifyRAT(info, inputs, outputs): outClass = numpy.zeros_like(inputs.inrat.b1Mean, dtype=numpy.int16) # Check for loss of water bodies (1) outClass = numpy.where(inputs.inrat.b1Mean < 1000, 1, outClass) # Save output column to RAT outputs.outrat.outClass = outClass # Set up options parser = argparse.ArgumentParser() parser.add_argument("inclumps", nargs=1, type=str, help="Input clumps file") args = parser.parse_args() inRats = ratapplier.RatAssociations() outRats = ratapplier.RatAssociations() inRats.inrat = ratapplier.RatHandle(args.inclumps[0]) outRats.outrat = ratapplier.RatHandle(args.inclumps[0]) ratapplier.apply(classifyRAT, inRats, outRats)
def perform_analysis(self, scn_db_obj, sen_obj, plgin_objs): logger.info("Processing Scene: {}".format(scn_db_obj.PID)) if scn_db_obj.Invalid: return False, None, False rsgis_utils = rsgislib.RSGISPyUtils() eodd_utils = EODataDownUtils() success = True outputs = False out_dict = None if 'GenChngSummaryFeats' in plgin_objs: if plgin_objs['GenChngSummaryFeats'].Completed and plgin_objs[ 'GenChngSummaryFeats'].Outputs and plgin_objs[ 'GenChngSummaryFeats'].Success: scn_chng_info = plgin_objs['GenChngSummaryFeats'].ExtendedInfo scn_unq_name = sen_obj.get_scn_unq_name_record(scn_db_obj) out_vec_file = os.path.join( self.params['outvecdir'], "{}_chng_vec.gpkg".format(scn_unq_name)) if os.path.exists(out_vec_file): delete_vector_file(out_vec_file) if sen_obj.get_sensor_name() == 'LandsatGOOG': scn_obs_date = scn_db_obj.Sensing_Time elif sen_obj.get_sensor_name() == 'Sentinel2GOOG': scn_obs_date = scn_db_obj.Sensing_Time elif sen_obj.get_sensor_name() == 'Sentinel1ASF': scn_obs_date = scn_db_obj.Acquisition_Date else: raise Exception("Did not recognise the sensor name...") start_date = datetime.datetime(year=2019, month=4, day=30) if scn_obs_date > start_date: try: import tqdm progress_bar = rsgislib.TQDMProgressBar() except: from rios import cuiprogress progress_bar = cuiprogress.GDALProgressBar() drv = gdal.GetDriverByName("GPKG") if drv is None: raise Exception("Driver GPKG is not avaiable.") ds = drv.Create(out_vec_file, 0, 0, 0, gdal.GDT_Unknown) if ds is None: raise Exception( "Could not create output file: {}.".format( out_vec_file)) out_dict = dict() for tile in scn_chng_info: logger.debug("Processing tile {}...".format(tile)) clumps_img = scn_chng_info[tile] in_rats = ratapplier.RatAssociations() out_rats = ratapplier.RatAssociations() in_rats.inrat = ratapplier.RatHandle(clumps_img) lyr = ds.CreateLayer(tile, None, ogr.wkbPoint) if lyr is None: raise Exception( "Could not create output layer: {}.".format( tile)) field_uid_defn = ogr.FieldDefn("uid", ogr.OFTInteger) if lyr.CreateField(field_uid_defn) != 0: raise Exception("Could not create field: 'uid'.") field_prop_chng_defn = ogr.FieldDefn( "prop_chng", ogr.OFTReal) if lyr.CreateField(field_prop_chng_defn) != 0: raise Exception( "Could not create field: 'prop_chng'.") field_score_defn = ogr.FieldDefn( "score", ogr.OFTInteger) if lyr.CreateField(field_score_defn) != 0: raise Exception("Could not create field: 'score'.") # First Observation Date field_firstobsday_defn = ogr.FieldDefn( "firstobsday", ogr.OFTInteger) if lyr.CreateField(field_firstobsday_defn) != 0: raise Exception( "Could not create field: 'firstobsday'.") field_firstobsmonth_defn = ogr.FieldDefn( "firstobsmonth", ogr.OFTInteger) if lyr.CreateField(field_firstobsmonth_defn) != 0: raise Exception( "Could not create field: 'firstobsmonth'.") field_firstobsyear_defn = ogr.FieldDefn( "firstobsyear", ogr.OFTInteger) if lyr.CreateField(field_firstobsyear_defn) != 0: raise Exception( "Could not create field: 'firstobsyear'.") # Last Observation Date field_lastobsday_defn = ogr.FieldDefn( "lastobsday", ogr.OFTInteger) if lyr.CreateField(field_lastobsday_defn) != 0: raise Exception( "Could not create field: 'lastobsday'.") field_lastobsmonth_defn = ogr.FieldDefn( "lastobsmonth", ogr.OFTInteger) if lyr.CreateField(field_lastobsmonth_defn) != 0: raise Exception( "Could not create field: 'lastobsmonth'.") field_lastobsyear_defn = ogr.FieldDefn( "lastobsyear", ogr.OFTInteger) if lyr.CreateField(field_lastobsyear_defn) != 0: raise Exception( "Could not create field: 'lastobsyear'.") # Observation Date Where Score Reached 5 field_scr5obsday_defn = ogr.FieldDefn( "scr5obsday", ogr.OFTInteger) if lyr.CreateField(field_scr5obsday_defn) != 0: raise Exception( "Could not create field: 'scr5obsday'.") field_scr5obsmonth_defn = ogr.FieldDefn( "scr5obsmonth", ogr.OFTInteger) if lyr.CreateField(field_scr5obsmonth_defn) != 0: raise Exception( "Could not create field: 'scr5obsmonth'.") field_scr5obsyear_defn = ogr.FieldDefn( "scr5obsyear", ogr.OFTInteger) if lyr.CreateField(field_scr5obsyear_defn) != 0: raise Exception( "Could not create field: 'scr5obsyear'.") lyr_defn = lyr.GetLayerDefn() otherargs = ratapplier.OtherArguments() otherargs.lyr = lyr otherargs.lyr_defn = lyr_defn ratcontrols = ratapplier.RatApplierControls() ratcontrols.setProgress(progress_bar) ratapplier.apply(_ratapplier_check_string_col_valid, in_rats, out_rats, otherargs, controls=ratcontrols) # Update (create) the JSON LUT file. lut_file_name = "gmw_{}_lut.json".format(tile) lut_file_path = os.path.join(self.params["outlutdir"], lut_file_name) eodd_utils.get_file_lock(lut_file_path, sleep_period=1, wait_iters=120, use_except=True) if os.path.exists(lut_file_path): lut_dict = rsgis_utils.readJSON2Dict(lut_file_path) else: lut_dict = dict() obs_date_iso_str = scn_obs_date.isoformat() lut_dict[obs_date_iso_str] = dict() lut_dict[obs_date_iso_str]["file"] = out_vec_file lut_dict[obs_date_iso_str]["layer"] = tile rsgis_utils.writeDict2JSON(lut_dict, lut_file_path) eodd_utils.release_file_lock(lut_file_path) out_dict[tile] = out_vec_file ds = None outputs = True success = True else: logger.debug( "Scene is within window used to mask change outside of range." ) else: logger.debug( "No change features available as outputs from previous steps..." ) else: logger.debug( "GenChngSummaryFeats was not available so previous step had not run..." ) return success, out_dict, outputs