Example #1
0
    def updateMasterPolicy(self, seg):
        ob, ac, atarg, tdlamret = seg["macro_ob"], seg["macro_ac"], seg["macro_adv"], seg["macro_tdlamret"]
        # ob = np.ones_like(ob)
        mean = atarg.mean()
        std = atarg.std()
        meanlist = MPI.COMM_WORLD.allgather(mean)
        global_mean = np.mean(meanlist)

        real_var = std**2 + (mean - global_mean)**2
        variance_list = MPI.COMM_WORLD.allgather(real_var)
        global_std = np.sqrt(np.mean(variance_list))

        atarg = (atarg - global_mean) / max(global_std, 0.000001)

        d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), shuffle=True)
        optim_batchsize = min(self.optim_batchsize,ob.shape[0])

        self.policy.ob_rms.update(ob) # update running mean/std for policy

        self.assign_old_eq_new()
        for _ in range(self.optim_epochs):
            for batch in d.iterate_once(optim_batchsize):
                g = self.master_loss(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"])
                
                if WRITE_SCALAR:
                    sess = U.get_session()
                    summ = self.calc_summary(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"])[0]
                    self.scalar_writer.add_summary(summ)

                self.master_adam.update(g, 0.01, 1)

        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        logger.record_tabular("EpRewMean", np.mean(rews))

        return np.mean(rews), np.mean(seg["ep_rets"])
Example #2
0
    def updateSubPoliciesNonRecurrent(self, test_segs, num_batches, optimize=True):
        if not optimize: return

        optimizable = []
        test_ds = []
        batchsizes = []
        for i in range(self.num_subpolicies):
            is_optimizing = True
            test_seg = test_segs[i]
            ob, ac, atarg, tdlamret, mask = test_seg["ob"], test_seg["ac"], test_seg["adv"], \
                    test_seg["tdlamret"], test_seg["mask"]

            # don't optimize if insufficient data
            if np.shape(ob)[0] < 1:
                is_optimizing = False
                test_d = None
            else:
                atarg = np.array(atarg, dtype='float32')
                atarg = (atarg - atarg.mean()) / max(atarg.std(), 0.000001)
                # logpacs for diversity loss
                logpacs = [U.get_session().run(pi.pd.logp(test_seg['ac']), 
                    {self.sub_obs[j]: test_seg['ob']}) for j, pi in enumerate(self.sub_policies)]
                logpacs = np.array(logpacs).transpose()
                test_d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret, 
                    logpacs=logpacs, mask=mask), shuffle=True)
            test_batchsize = int(ob.shape[0] / num_batches)

            optimizable.append(is_optimizing)
            test_ds.append(test_d)
            batchsizes.append(test_batchsize)

            self.subs_assign_old_eq_new[i]()

            if self.optim_batchsize > 0 and is_optimizing and optimize:
                self.sub_policies[i].ob_rms.update(ob)

        if optimize:
            def make_feed_dict():
                # one dict per batch
                # multiple subpolicy data in one dict
                feed_dict = [{} for _ in range(num_batches)]

                for i in range(self.num_subpolicies):
                    if self.optim_batchsize > 0 and optimizable[i]:
                        batch_num = 0
                        for test_batch in test_ds[i].iterate_times(batchsizes[i], 
                                num_batches):
                            feed_dict[batch_num][i] = True
                            feed_dict[batch_num][self.sub_obs[i]] = test_batch['ob']
                            feed_dict[batch_num][self.sub_acs[i]] = test_batch['ac']
                            feed_dict[batch_num][self.sub_atargs[i]] = test_batch['atarg']
                            feed_dict[batch_num][self.sub_ret[i]] = test_batch['vtarg']
                            feed_dict[batch_num][self.loss_masks[i]] = test_batch['mask']
                            feed_dict[batch_num][self.logpacs[i]] = \
                                    test_batch['logpacs'].transpose()
                            batch_num += 1

                return feed_dict

            kl_array, pol_surr_array, vf_loss_array, entropy_array, div_array = [[[] for _ 
                in range(self.num_subpolicies)] for _ in range(5)]
            for _ in range(self.optim_epochs):
                feed_dict = make_feed_dict()
                for _dict in feed_dict:
                    # get indicies of subpolicies whose data exists
                    valid_idx = [i for i in range(self.num_subpolicies) if i in _dict] 
                    train_steps = ix_(self.sub_train_steps, valid_idx)  
                    kl = ix_(self.sub_kl, valid_idx)  
                    pol_surr = ix_(self.sub_pol_surr, valid_idx)  
                    vf_loss = ix_(self.sub_vf_loss, valid_idx)  
                    entropy = ix_(self.sub_entropy, valid_idx)  
                    div_loss = ix_(self.div_loss, valid_idx)
                    
                    keys = list(_dict.keys())
                    for key in keys:
                        if isinstance(key, int):
                            del _dict[key]

                    """
                    _, sub_kl, sub_pol_surr, sub_vf_loss, sub_entropy, sub_div_loss = \
                            U.get_session().run([train_steps, kl, pol_surr, vf_loss, 
                                entropy, div_loss], _dict)
                    """
                    _, sub_kl, sub_pol_surr, sub_vf_loss, sub_entropy= \
                            U.get_session().run([train_steps, kl, pol_surr, vf_loss, 
                                entropy], _dict)

                    ix_append_(kl_array, sub_kl, valid_idx)
                    ix_append_(pol_surr_array, sub_pol_surr, valid_idx)
                    ix_append_(vf_loss_array, sub_vf_loss, valid_idx)
                    ix_append_(entropy_array, sub_entropy, valid_idx)
                    #ix_append_(div_array, sub_div_loss, valid_idx)

            for i in range(self.num_subpolicies):
                logger.logkv('(S%d) KL'%i, np.mean(kl_array[i]))
                logger.logkv('(S%d) policy loss'%i, np.mean(pol_surr_array[i]))
                logger.logkv('(S%d) value loss'%i, np.mean(vf_loss_array[i]))
                logger.logkv('(S%d) entropy loss'%i, np.mean(entropy_array[i]))
                #logger.logkv('(S%d) diversity loss'%i, np.mean(div_array[i]))
                logger.dumpkvs()
Example #3
0
    def updateSubPoliciesRecurrent(self, test_segs, num_batches, horizon, num_env, 
            optimize=True):
        envinds = np.arange(num_env)
        flatinds = np.arange(num_env*horizon).reshape(num_env, horizon)
        envsperbatch = max(1, num_env // num_batches)
        num_batches = num_env // envsperbatch
        for i in range(len(self.sub_policies)):
            test_seg = test_segs[i]
            ob, ac, atarg, tdlamret, new, mask = test_seg["ob"], test_seg["ac"], \
                    test_seg["adv"], test_seg["tdlamret"], test_seg["new"], test_seg["mask"]
            mask_idx = np.array(mask, bool)
            is_optimizing = np.sum(mask) > 0

            self.subs_assign_old_eq_new[i]()

            if self.optim_batchsize > 0 and is_optimizing and optimize:
                self.sub_policies[i].ob_rms.update(ob[mask_idx])
                atarg = np.array(atarg, dtype='float32')
                atarg = (atarg - atarg[mask_idx].mean()) / max(atarg[mask_idx].std(), 
                        0.000001)
                test_seg["adv"] = atarg

        def make_feed_dict():
            feed_dict = [{} for _ in range(num_batches)]

            for i in range(self.num_subpolicies):
                test_seg = test_segs[i]
                np.random.shuffle(envinds)
                batch_num = 0
                for start in range(0, num_env, envsperbatch):
                    end = start + envsperbatch
                    mbenvinds = envinds[start:end]
                    mbflatinds = flatinds[mbenvinds].ravel()

                    feed_dict[batch_num][self.sub_obs[i]] = test_seg["ob"][mbflatinds] 
                    feed_dict[batch_num][self.sub_acs[i]] = test_seg["ac"][mbflatinds] 
                    feed_dict[batch_num][self.sub_atargs[i]] = test_seg["adv"][mbflatinds] 
                    feed_dict[batch_num][self.sub_ret[i]] = test_seg["tdlamret"][mbflatinds] 
                    feed_dict[batch_num][self.sub_masks[i]] = test_seg["new"][mbflatinds] 
                    feed_dict[batch_num][self.loss_masks[i]] = test_seg["mask"][mbflatinds] 
                    feed_dict[batch_num][self.sub_states[i]] = test_seg["state"][mbenvinds] 
                    batch_num += 1

            return feed_dict


        if optimize:
            kl_array, pol_surr_array, vf_loss_array, entropy_array = [[[] 
                for _ in range(self.num_subpolicies)] for _ in range(4)]
            for _ in range(self.optim_epochs):
                feed_dict = make_feed_dict()
                for _dict in feed_dict:

                 _, sub_kl, sub_pol_surr, sub_vf_loss, sub_entropy = \
                        U.get_session().run([self.sub_train_steps, self.sub_kl, 
                            self.sub_pol_surr, self.sub_vf_loss, self.sub_entropy], _dict)

            valid_idx = range(self.num_subpolicies)
            ix_append_(kl_array, sub_kl, valid_idx)
            ix_append_(pol_surr_array, sub_pol_surr, valid_idx)
            ix_append_(vf_loss_array, sub_vf_loss, valid_idx)
            ix_append_(entropy_array, sub_entropy, valid_idx)
                    
            for i in range(self.num_subpolicies):
                logger.logkv('(S%d) KL'%i, np.mean(kl_array[i]))
                logger.logkv('(S%d) policy loss'%i, np.mean(pol_surr_array[i]))
                logger.logkv('(S%d) value loss'%i, np.mean(vf_loss_array[i]))
                logger.logkv('(S%d) entropy loss'%i, np.mean(entropy_array[i]))
                logger.dumpkvs()
Example #4
0
    def updateMasterPolicy(self, seg):
        ob, ac, atarg, tdlamret = seg["macro_ob"], seg["macro_ac"], \
                seg["macro_adv"], seg["macro_tdlamret"]
        sample_ob = ob[0][0][0]
        
        def transform_array(array, shape=None):
            array = np.split(array, self.num_master_groups, axis=1)
            if shape != None: 
                shape = [-1] + shape
                array = [elem.reshape(*shape) for elem in array]
            else:
                array = [elem.reshape(-1) for elem in array]
            return array

        # ob - T x num_master_groups x num_sub_grps x ob_dims
        # flatten to make train batches
        ob = transform_array(ob, list(sample_ob.shape)) 
        ac = transform_array(ac)
        atarg = transform_array(atarg)
        tdlamret = transform_array(tdlamret) 

        atarg = np.array(atarg, dtype='float32')
        mean = atarg.mean()
        std = atarg.std()
        atarg = (atarg - mean) / max(std, 0.000001)

        d = [Dataset(dict(ob=ob[i], ac=ac[i], atarg=atarg[i], vtarg=tdlamret[i]), 
            shuffle=True) for i in range(self.num_master_groups)]
        optim_batchsize = min(self.optim_batchsize, ob[0].shape[0])
        num_updates = ob[0].shape[0] // optim_batchsize

        [self.policies[i].ob_rms.update(ob[i]) for i in range(self.num_master_groups)]
        [f() for f in self.assign_old_eq_new]

        kl_array, pol_surr_array, vf_loss_array, entropy_array, values_array = [[] for _ in 
                range(5)]
        for _ in range(self.optim_epochs):
            for __ in range(num_updates):
                batches = [next(d[i].iterate_once(optim_batchsize))
                        for i in range(self.num_master_groups)]
                feed_dict = {}
                for i in range(self.num_master_groups):
                    feed_dict[self.master_obs[i]] = batches[i]['ob']
                    feed_dict[self.master_acs[i]] = batches[i]['ac']
                    feed_dict[self.master_atargs[i]] = batches[i]['atarg']
                    feed_dict[self.master_ret[i]] = batches[i]['vtarg']

                _, kl, pol_surr, vf_loss, entropy, values = U.get_session().run(
                        [self.master_train_steps, 
                    self.master_kl, self.master_pol_surr, self.master_vf_loss, 
                    self.master_entropy, self.master_values], feed_dict)
                kl_array.append(kl)
                pol_surr_array.append(pol_surr)
                vf_loss_array.append(vf_loss)
                entropy_array.append(entropy)

        ep_rets = flatten_lists(seg["ep_rets"])
        ep_rets = flatten_lists(ep_rets)
        ep_lens = flatten_lists(seg["ep_lens"])
        ep_lens = flatten_lists(ep_lens)

        logger.logkv('Mean episode return', np.mean(ep_rets))
        logger.logkv('Mean episode length', np.mean(ep_lens))
        logger.dumpkvs()

        logger.logkv('(M) KL', np.mean(kl_array))
        logger.logkv('(M) policy loss', np.mean(pol_surr_array))
        logger.logkv('(M) value loss', np.mean(vf_loss_array))
        logger.logkv('(M) entropy loss', np.mean(entropy_array))
        logger.dumpkvs()
Example #5
0
 def reset_master_optimizer(self):
     for i in range(self.num_master_groups):
         optimizer_scope = [var for var in 
                 tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
                 if 'master_adam_%i'%i in var.name] 
         U.get_session().run(tf.initialize_variables(optimizer_scope))
Example #6
0
 def reset(self):
     with tf.variable_scope(self.scope, reuse=True):
         varlist = self.get_trainable_variables()
         initializer = tf.variables_initializer(varlist)
         U.get_session().run(initializer)