def test_filter(env_response):
    crop_low = np.array([0, 5, 10])
    crop_high = np.array([5, 10, 20])
    crop_filter = InputFilter()
    crop_filter.add_observation_filter('observation', 'crop', ObservationCropFilter(crop_low, crop_high))

    result = crop_filter.filter(env_response)[0]
    unfiltered_observation = env_response.next_state['observation']
    filtered_observation = result.next_state['observation']

    # validate the shape of the filtered observation
    assert filtered_observation.shape == (5, 5, 10)

    # validate the content of the filtered observation
    assert np.all(filtered_observation == unfiltered_observation[0:5, 5:10, 10:20])

    # crop with -1 on some axes
    crop_low = np.array([0, 0, 0])
    crop_high = np.array([5, -1, -1])
    crop_filter = InputFilter()
    crop_filter.add_observation_filter('observation', 'crop', ObservationCropFilter(crop_low, crop_high))

    result = crop_filter.filter(env_response)[0]
    unfiltered_observation = env_response.next_state['observation']
    filtered_observation = result.next_state['observation']

    # validate the shape of the filtered observation
    assert filtered_observation.shape == (5, 20, 30)

    # validate the content of the filtered observation
    assert np.all(filtered_observation == unfiltered_observation[0:5, :, :])
def test_get_filtered_observation_space():
    crop_low = np.array([0, 5, 10])
    crop_high = np.array([5, 10, 20])
    crop_filter = InputFilter()
    crop_filter.add_observation_filter('observation', 'crop', ObservationCropFilter(crop_low, crop_high))

    observation_space = ObservationSpace(np.array([5, 10, 20]))
    filtered_observation_space = crop_filter.get_filtered_observation_space('observation', observation_space)

    # make sure the new observation space shape is calculated correctly
    assert np.all(filtered_observation_space.shape == np.array([5, 5, 10]))

    # make sure the original observation space is unchanged
    assert np.all(observation_space.shape == np.array([5, 10, 20]))

    # crop_high is bigger than the observation space
    high_error_observation_space = ObservationSpace(np.array([3, 8, 14]))
    with pytest.raises(ValueError):
        crop_filter.get_filtered_observation_space('observation', high_error_observation_space)

    # crop_low is bigger than the observation space
    low_error_observation_space = ObservationSpace(np.array([3, 3, 10]))
    with pytest.raises(ValueError):
        crop_filter.get_filtered_observation_space('observation', low_error_observation_space)

    # crop with -1 on some axes
    crop_low = np.array([0, 0, 0])
    crop_high = np.array([5, -1, -1])
    crop_filter = InputFilter()
    crop_filter.add_observation_filter('observation', 'crop', ObservationCropFilter(crop_low, crop_high))

    observation_space = ObservationSpace(np.array([5, 10, 20]))
    filtered_observation_space = crop_filter.get_filtered_observation_space('observation', observation_space)

    # make sure the new observation space shape is calculated correctly
    assert np.all(filtered_observation_space.shape == np.array([5, 10, 20]))
Example #3
0
def test_filter_stacking():
    # test that filter stacking works fine by taking as input a transition with:
    # - an observation of shape 210x160,
    # - a reward of 100
    # filtering it by:
    # - rescaling the observation to 110x84
    # - cropping the observation to 84x84
    # - clipping the reward to 1
    # - stacking 4 observations to get 84x84x4

    env_response = EnvResponse({'observation': np.ones([210, 160])}, reward=100, game_over=False)

    filter1 = ObservationRescaleToSizeFilter(
        output_observation_space=ImageObservationSpace(np.array([110, 84]), high=255),
    )

    filter2 = ObservationCropFilter(
        crop_low=np.array([16, 0]),
        crop_high=np.array([100, 84])
    )

    filter3 = RewardClippingFilter(
        clipping_low=-1,
        clipping_high=1
    )

    output_filter = ObservationStackingFilter(
        stack_size=4,
        stacking_axis=-1
    )

    input_filter = InputFilter(
        observation_filters={
            "observation": OrderedDict([
                ("filter1", filter1),
                ("filter2", filter2),
                ("output_filter", output_filter)
            ])},
        reward_filters=OrderedDict([
            ("filter3", filter3)
        ])
    )

    result = input_filter.filter(env_response)[0]
    observation = np.array(result.next_state['observation'])
    assert observation.shape == (84, 84, 4)
    assert np.all(observation == np.ones([84, 84, 4]))
    assert result.reward == 1
Example #4
0
    def create_agents(self):
        for agent_name, agent_parameters in self.agents_parameters.items():
            agent_parameters.name = agent_name

            # create agent
            self.agents[agent_parameters.name] = short_dynamic_import(agent_parameters.path)(agent_parameters,
                                                                                             parent=self)
            self.agents[agent_parameters.name].parent_level_manager = self.parent_level_manager

        # TODO: this is a bit too specific to be defined here
        # add an attention cropping filter if the incoming directives are attention boxes
        if isinstance(self.in_action_space, AttentionActionSpace):
            attention_size = self.in_action_space.forced_attention_size
            for agent in self.agents.values():
                agent.input_filter.observation_filters['attention'] = \
                    ObservationCropFilter(crop_low=np.zeros_like(attention_size), crop_high=attention_size)
                agent.input_filter.observation_filters.move_to_end('attention', last=False)  # add the cropping at the beginning
Example #5
0
    RegressionHeadParameters(),
    RegressionHeadParameters()
]
# agent_params.network_wrappers['main'].num_output_head_copies = 4  # follow lane, left, right, straight
agent_params.network_wrappers['main'].rescale_gradient_from_head_by_factor = [1, 1, 1, 1]
agent_params.network_wrappers['main'].loss_weights = [1, 1, 1, 1]
# TODO: there should be another head predicting the speed which is connected directly to the forward camera embedding

agent_params.network_wrappers['main'].batch_size = 120
agent_params.network_wrappers['main'].learning_rate = 0.0002


# crop and rescale the image + use only the forward speed measurement
agent_params.input_filter = InputFilter()
agent_params.input_filter.add_observation_filter('CameraRGB', 'cropping',
                                                 ObservationCropFilter(crop_low=np.array([115, 0, 0]),
                                                                       crop_high=np.array([510, -1, -1])))
agent_params.input_filter.add_observation_filter('CameraRGB', 'rescale',
                                                 ObservationRescaleToSizeFilter(
                                                     ImageObservationSpace(np.array([88, 200, 3]), high=255)))
agent_params.input_filter.add_observation_filter('CameraRGB', 'to_uint8', ObservationToUInt8Filter(0, 255))
agent_params.input_filter.add_observation_filter(
    'measurements', 'select_speed',
    ObservationReductionBySubPartsNameFilter(
        ["forward_speed"], reduction_method=ObservationReductionBySubPartsNameFilter.ReductionMethod.Keep))

# no exploration is used
agent_params.exploration = AdditiveNoiseParameters()
agent_params.exploration.noise_percentage_schedule = ConstantSchedule(0)
agent_params.exploration.evaluation_noise_percentage = 0

# no playing during the training phase