Example #1
0
def main():
    # All agents use  a tabular model will initial values of 0
    # Updates are done via TD learning with a fixed learning rate
    # Action_FA of discrete max means the agent chooses the action with the highest utility from a discrete array
    base_agent = Agent(model=TabularModel(mean=0, std=0),
                       action_fa=DiscreteMaxFA(),
                       optimiser=TemporalDifference(learning_rate=FixedDecay(0.2)))

    # Randomly select the next action
    random_agent = copy.deepcopy(base_agent)
    random_agent.exploration = RandomExploration()

    # Always select the best action seen so far (is default behaviour for agents)
    greedy_agent = copy.deepcopy(base_agent)

    # Always select the best action seen so far with optimistic starting values
    optimistic_greedy_agent = copy.deepcopy(base_agent)
    optimistic_greedy_agent.model = TabularModel(mean=1, std=0)

    # Select a random action with decaying likelihood
    egreedy_agent = copy.deepcopy(base_agent)
    egreedy_agent.exploration = EpsilonGreedy(FixedDecay(1, 0.995, 0.01))

    # Select a random action with fixed likelihood
    fixed_egreedy_agent = copy.deepcopy(base_agent)
    fixed_egreedy_agent.exploration = EpsilonGreedy(FixedDecay(0.2))

    # Explores using softmax
    boltzmann_agent = copy.deepcopy(base_agent)
    boltzmann_agent.exploration = Softmax(FixedDecay(2, 0.995, 0.1))

    agents = [random_agent, greedy_agent, optimistic_greedy_agent, egreedy_agent, fixed_egreedy_agent, boltzmann_agent]
    labels = ['Random', 'Greedy', 'Optimistic Greedy', 'E-Greedy Decay', 'E-Greedy Fixed', 'Boltzmann']

    agent_reward = []
    max_reward = []
    episodes = 100

    for agent in agents:
        path = "/tmp/rlagents/"
        am = AgentManager(agent=agent)
        em = EnvManager('BanditTenArmedUniformDistributedReward-v0', am)
        em.run(n_episodes=episodes, print_stats=False, path=path, video_callable=False)

        max_reward.append(max(em.env.r_dist))
        results = load_results(path)
        agent_reward.append(results['episode_rewards'])

    for i, ar in enumerate(agent_reward):
        percent_correct = [agent_reward[i][:j].count(max_reward[i])/float(j) for j in range(1, episodes)]
        plt.plot(range(1, episodes), percent_correct, label=labels[i])

    plt.xlabel('Steps')
    plt.ylabel('% Optimal Arm Pulls')
    plt.ylim(-0.2, 1.5)
    plt.legend(loc=2)

    plt.show()
Example #2
0
    def shift(self, s):
        if s is None:
            s = FixedDecay(1, decay=0.995, minimum=0.01)

        if not isinstance(s, DecayBase):
            raise TypeError("Shift must be of type DecayBase")

        self._shift = s
Example #3
0
    def temperature(self, t):
        if t is None:
            t = FixedDecay(10, decay=0.997, minimum=0.1)

        if not isinstance(t, DecayBase):
            raise TypeError("Temperature must be of type DecayBase")

        self._temperature = t
Example #4
0
    def spread(self, s):
        if s is None:
            s = FixedDecay(0.05, 0, 0)

        if not isinstance(s, DecayBase):
            raise TypeError("Spread not a valid DecayBase")

        self._spread = s
Example #5
0
    def learning_rate(self, lr):
        if not isinstance(lr, DecayBase):
            lr = FixedDecay(1, decay=0.995, minimum=0.05)
            warnings.warn('Learning Rate type invalid, using default. ({0})'.format(lr))

        self._learning_rate = lr
Example #6
0
    def decay(self, d):
        if not isinstance(d, DecayBase):
            d = FixedDecay(0.1, 1, 0.1)
            warnings.warn("Decay type invalid, using default. {0}".format(d))

        self._decay = d
Example #7
0
    def test_update(self):
        exploration = EpsilonGreedy(FixedDecay(1, 0.95, 0.1))
        exploration.update()

        self.assertEqual(exploration.value, 0.95)
Example #8
0
 def test_epsilon_property(self):
     exploration = EpsilonGreedy(FixedDecay(0.2, 0.95, 0.1))
     self.assertEqual(0.2, exploration.value)