Example #1
0
    def test_train(self):

        norm_step = 1100
        memory_init_size = 100
        step_num = 1500

        agent = DQNAgent(scope='dqn',
                         replay_memory_size = 500,
                         replay_memory_init_size=memory_init_size,
                         update_target_estimator_every=100,
                         norm_step=norm_step,
                         state_shape=[2],
                         mlp_layers=[10,10],
                         device=torch.device('cpu'))

        predicted_action = agent.eval_step({'obs': np.random.random_sample((2,)), 'legal_actions': [0, 1]})
        self.assertGreaterEqual(predicted_action, 0)
        self.assertLessEqual(predicted_action, 1)

        for step in range(step_num):
            ts = [{'obs': np.random.random_sample((2,)), 'legal_actions': [0, 1]}, \
                np.random.randint(2), 0, {'obs': np.random.random_sample((2,)), 'legal_actions': [0, 1]}, True]
            agent.feed(ts)
            if step > norm_step + memory_init_size:
                agent.train()

        predicted_action = agent.step({'obs': np.random.random_sample((2,)), 'legal_actions': [0, 1]})
        self.assertGreaterEqual(predicted_action, 0)
        self.assertLessEqual(predicted_action, 1)
Example #2
0
    def test_train(self):

        memory_init_size = 100
        step_num = 500

        agent = DQNAgent(scope='dqn',
                         replay_memory_size = 200,
                         replay_memory_init_size=memory_init_size,
                         update_target_estimator_every=100,
                         state_shape=[2],
                         mlp_layers=[10,10],
                         device=torch.device('cpu'))

        predicted_action, _ = agent.eval_step({'obs': np.random.random_sample((2,)), 'legal_actions': [0, 1]})
        self.assertGreaterEqual(predicted_action, 0)
        self.assertLessEqual(predicted_action, 1)

        for _ in range(step_num):
            ts = [{'obs': np.random.random_sample((2,)), 'legal_actions': [0, 1]}, np.random.randint(2), 0, {'obs': np.random.random_sample((2,)), 'legal_actions': [0, 1]}, True]
            agent.feed(ts)
        state_dict = agent.get_state_dict()
        self.assertIsInstance(state_dict, dict)

        predicted_action = agent.step({'obs': np.random.random_sample((2,)), 'legal_actions': [0, 1]})
        self.assertGreaterEqual(predicted_action, 0)
        self.assertLessEqual(predicted_action, 1)
Example #3
0
    def test_init(self):

        agent = DQNAgent(scope='dqn',
                         replay_memory_size=0,
                         replay_memory_init_size=0,
                         update_target_estimator_every=0,
                         discount_factor=0,
                         epsilon_start=0,
                         epsilon_end=0,
                         epsilon_decay_steps=0,
                         batch_size=0,
                         action_num=2,
                         state_shape=[1],
                         mlp_layers=[10, 10],
                         device=torch.device('cpu'))

        self.assertEqual(agent.replay_memory_init_size, 0)
        self.assertEqual(agent.update_target_estimator_every, 0)
        self.assertEqual(agent.discount_factor, 0)
        self.assertEqual(agent.epsilon_decay_steps, 0)
        self.assertEqual(agent.batch_size, 0)
        self.assertEqual(agent.action_num, 2)
Example #4
0
    def __init__(self,
                 scope,
                 action_num=4,
                 state_shape=None,
                 hidden_layers_sizes=None,
                 reservoir_buffer_capacity=int(1e6),
                 anticipatory_param=0.5,
                 batch_size=256,
                 rl_learning_rate=0.0001,
                 sl_learning_rate=0.00001,
                 min_buffer_size_to_learn=1000,
                 q_replay_memory_size=30000,
                 q_replay_memory_init_size=1000,
                 q_update_target_estimator_every=1000,
                 q_discount_factor=0.99,
                 q_epsilon_start=1,
                 q_epsilon_end=0.1,
                 q_epsilon_decay_steps=int(1e6),
                 q_batch_size=256,
                 q_norm_step=1000,
                 q_mlp_layers=None,
                 device=None):
        ''' Initialize the NFSP agent.

        Args:
            scope (string): The name scope of NFSPAgent.
            action_num (int): The number of actions.
            state_shape (list): The shape of the state space.
            hidden_layers_sizes (list): The hidden layers sizes for the layers of
              the average policy.
            reservoir_buffer_capacity (int): The size of the buffer for average policy.
            anticipatory_param (float): The hyper-parameter that balances rl/avarage policy.
            batch_size (int): The batch_size for training average policy.
            rl_learning_rate (float): The learning rate of the RL agent.
            sl_learning_rate (float): the learning rate of the average policy.
            min_buffer_size_to_learn (int): The minimum buffer size to learn for average policy.
            q_replay_memory_size (int): The memory size of inner DQN agent.
            q_replay_memory_init_size (int): The initial memory size of inner DQN agent.
            q_update_target_estimator_every (int): The frequency of updating target network for
              inner DQN agent.
            q_discount_factor (float): The discount factor of inner DQN agent.
            q_epsilon_start (float): The starting epsilon of inner DQN agent.
            q_epsilon_end (float): the end epsilon of inner DQN agent.
            q_epsilon_decay_steps (int): The decay steps of inner DQN agent.
            q_batch_size (int): The batch size of inner DQN agent.
            q_norm_step (int): The normalization steps of inner DQN agent.
            q_mlp_layers (list): The layer sizes of inner DQN agent.
            device (torch.device): Whether to use the cpu or gpu
        '''
        self.scope = scope
        self._action_num = action_num
        self._state_shape = state_shape
        self._layer_sizes = hidden_layers_sizes + [action_num]
        self._batch_size = batch_size
        self._sl_learning_rate = sl_learning_rate
        self._anticipatory_param = anticipatory_param
        self._min_buffer_size_to_learn = min_buffer_size_to_learn

        self._reservoir_buffer = ReservoirBuffer(reservoir_buffer_capacity)
        self._prev_timestep = None
        self._prev_action = None

        if device is None:
            self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = device

        # Step counter to keep track of learning.
        self._step_counter = 0

        # Build the action-value network
        self._rl_agent = DQNAgent('dqn', q_replay_memory_size, q_replay_memory_init_size, \
            q_update_target_estimator_every, q_discount_factor, q_epsilon_start, q_epsilon_end, \
            q_epsilon_decay_steps, q_batch_size, action_num, state_shape, q_norm_step, q_mlp_layers, \
            rl_learning_rate, device)

        # Build the average policy supervised model
        self._build_model()

        self.sample_episode_policy()
Example #5
0
class NFSPAgent(object):
    ''' An approximate clone of rlcard.agents.nfsp_agent that uses
    pytorch instead of tensorflow.  Note that this implementation
    differs from Henrich and Silver (2016) in that the supervised
    training minimizes cross-entropy with respect to the stored
    action probabilities rather than the realized actions.
    '''

    def __init__(self,
                 scope,
                 action_num=4,
                 state_shape=None,
                 hidden_layers_sizes=None,
                 reservoir_buffer_capacity=int(1e6),
                 anticipatory_param=0.5,
                 batch_size=256,
                 rl_learning_rate=0.0001,
                 sl_learning_rate=0.00001,
                 min_buffer_size_to_learn=1000,
                 q_replay_memory_size=30000,
                 q_replay_memory_init_size=1000,
                 q_update_target_estimator_every=1000,
                 q_discount_factor=0.99,
                 q_epsilon_start=1,
                 q_epsilon_end=0.1,
                 q_epsilon_decay_steps=int(1e6),
                 q_batch_size=256,
                 q_norm_step=1000,
                 q_mlp_layers=None,
                 device=None):
        ''' Initialize the NFSP agent.

        Args:
            scope (string): The name scope of NFSPAgent.
            action_num (int): The number of actions.
            state_shape (list): The shape of the state space.
            hidden_layers_sizes (list): The hidden layers sizes for the layers of
              the average policy.
            reservoir_buffer_capacity (int): The size of the buffer for average policy.
            anticipatory_param (float): The hyper-parameter that balances rl/avarage policy.
            batch_size (int): The batch_size for training average policy.
            rl_learning_rate (float): The learning rate of the RL agent.
            sl_learning_rate (float): the learning rate of the average policy.
            min_buffer_size_to_learn (int): The minimum buffer size to learn for average policy.
            q_replay_memory_size (int): The memory size of inner DQN agent.
            q_replay_memory_init_size (int): The initial memory size of inner DQN agent.
            q_update_target_estimator_every (int): The frequency of updating target network for
              inner DQN agent.
            q_discount_factor (float): The discount factor of inner DQN agent.
            q_epsilon_start (float): The starting epsilon of inner DQN agent.
            q_epsilon_end (float): the end epsilon of inner DQN agent.
            q_epsilon_decay_steps (int): The decay steps of inner DQN agent.
            q_batch_size (int): The batch size of inner DQN agent.
            q_norm_step (int): The normalization steps of inner DQN agent.
            q_mlp_layers (list): The layer sizes of inner DQN agent.
            device (torch.device): Whether to use the cpu or gpu
        '''
        self.scope = scope
        self._action_num = action_num
        self._state_shape = state_shape
        self._layer_sizes = hidden_layers_sizes + [action_num]
        self._batch_size = batch_size
        self._sl_learning_rate = sl_learning_rate
        self._anticipatory_param = anticipatory_param
        self._min_buffer_size_to_learn = min_buffer_size_to_learn

        self._reservoir_buffer = ReservoirBuffer(reservoir_buffer_capacity)
        self._prev_timestep = None
        self._prev_action = None

        if device is None:
            self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = device

        # Step counter to keep track of learning.
        self._step_counter = 0

        # Build the action-value network
        self._rl_agent = DQNAgent('dqn', q_replay_memory_size, q_replay_memory_init_size, \
            q_update_target_estimator_every, q_discount_factor, q_epsilon_start, q_epsilon_end, \
            q_epsilon_decay_steps, q_batch_size, action_num, state_shape, q_norm_step, q_mlp_layers, \
            rl_learning_rate, device)

        # Build the average policy supervised model
        self._build_model()

        self.sample_episode_policy()

    def _build_model(self):
        ''' Build the average policy network
        '''

        # configure the average policy network
        policy_network = AveragePolicyNetwork(self._action_num, self._state_shape, self._layer_sizes)
        policy_network = policy_network.to(self.device)
        self.policy_network = policy_network
        self.policy_network.eval()
        print(self.policy_network)

        # xavier init
        for p in self.policy_network.parameters():
            if len(p.data.shape) > 1:
                nn.init.xavier_uniform_(p.data)

        # configure optimizer
        self.policy_network_optimizer = torch.optim.Adam(self.policy_network.parameters(), lr=self._sl_learning_rate)

    def feed(self, ts):
        ''' Feed data to inner RL agent

        Args:
            ts (list): A list of 5 elements that represent the transition.
        '''
        self._rl_agent.feed(ts)

    def step(self, state,player_id):
        ''' Returns the action to be taken.

        Args:
            state (dict): The current state

        Returns:
            action (int): An action id
        '''
        obs = state['obs']
        legal_actions = state['legal_actions']
        if self._mode == MODE.best_response:
            probs = self._rl_agent.predict(obs)
            self._add_transition(obs, probs)

        elif self._mode == MODE.average_policy:
            probs = self._act(obs)

        probs = remove_illegal(probs, legal_actions)
        action = np.random.choice(len(probs), p=probs)

        return action

    def eval_step(self, state,player_id):
        ''' Use the average policy for evaluation purpose

        Args:
            state (dict): The current state.

        Returns:
            action (int): An action id.
        '''
        action = self._rl_agent.eval_step(state,player_id)
        return action

    def sample_episode_policy(self):
        ''' Sample average/best_response policy
        '''
        if np.random.rand() < self._anticipatory_param:
            self._mode = MODE.best_response
        else:
            self._mode = MODE.average_policy

    def _act(self, info_state):
        ''' Predict action probability givin the observation and legal actions
            Not connected to computation graph
        Args:
            info_state (numpy.array): An obervation.

        Returns:
            action_probs (numpy.array): The predicted action probability.
        '''
        info_state = np.expand_dims(info_state, axis=0)
        info_state = torch.from_numpy(info_state).float().to(self.device)

        with torch.no_grad():
            log_action_probs = self.policy_network(info_state).numpy()

        action_probs = np.exp(log_action_probs)[0]

        return action_probs

    def _add_transition(self, state, probs):
        ''' Adds the new transition to the reservoir buffer.

        Transitions are in the form (state, probs).

        Args:
            state (numpy.array): The state.
            probs (numpy.array): The probabilities of each action.
        '''
        transition = Transition(
                info_state=state,
                action_probs=probs)
        self._reservoir_buffer.add(transition)

    def train_rl(self):
        ''' Update the inner RL agent
        '''
        return self._rl_agent.train()

    def train_sl(self):
        ''' Compute the loss on sampled transitions and perform a avg-network update.

        If there are not enough elements in the buffer, no loss is computed and
        `None` is returned instead.

        Returns:
            loss (float): The average loss obtained on this batch of transitions or `None`.
        '''
        if (len(self._reservoir_buffer) < self._batch_size or
                len(self._reservoir_buffer) < self._min_buffer_size_to_learn):
            return None

        transitions = self._reservoir_buffer.sample(self._batch_size)
        info_states = [t.info_state for t in transitions]
        action_probs = [t.action_probs for t in transitions]

        self.policy_network_optimizer.zero_grad()
        self.policy_network.train()

        # (batch, state_size)
        info_states = torch.from_numpy(np.array(info_states)).float().to(self.device)

        # (batch, action_num)
        eval_action_probs = torch.from_numpy(np.array(action_probs)).float().to(self.device)

        # (batch, action_num)
        log_forecast_action_probs = self.policy_network(info_states)

        ce_loss = - (eval_action_probs * log_forecast_action_probs).sum(dim=-1).mean()
        ce_loss.backward()

        self.policy_network_optimizer.step()
        ce_loss = ce_loss.item()
        self.policy_network.eval()

        return ce_loss
# The intial memory size
memory_init_size = 1000

# Train the agent every X steps
train_every = 1

# The paths for saving the logs and learning curves
log_dir = './experiments/limit_holdem_dqn_result/'

# Set a global seed
set_global_seed(0)

agent = DQNAgent(scope='dqn',
                 action_num=env.action_num,
                 replay_memory_init_size=memory_init_size,
                 train_every=train_every,
                 state_shape=env.state_shape,
                 mlp_layers=[128, 128],
                 device=torch.device('cpu'))
random_agent = RandomAgent(action_num=eval_env.action_num)
env.set_agents([agent, random_agent])
eval_env.set_agents([agent, random_agent])

# Init a Logger to plot the learning curve
logger = Logger(log_dir)

for episode in range(episode_num):

    # Generate data from the environment
    trajectories, _ = env.run(is_training=True)
Example #7
0
    def __init__(self,
                 scope,
                 action_num=4,
                 state_shape=None,
                 hidden_layers_sizes=None,
                 reservoir_buffer_capacity=int(1e6),
                 anticipatory_param=0.1,
                 batch_size=256,
                 train_every=1,
                 rl_learning_rate=0.1,
                 sl_learning_rate=0.005,
                 min_buffer_size_to_learn=1000,
                 q_replay_memory_size=30000,
                 q_replay_memory_init_size=1000,
                 q_update_target_estimator_every=1000,
                 q_discount_factor=0.99,
                 q_epsilon_start=0.06,
                 q_epsilon_end=0,
                 q_epsilon_decay_steps=int(1e6),
                 q_batch_size=256,
                 q_train_every=1,
                 q_mlp_layers=None,
                 evaluate_with='average_policy',
                 device=None):
        ''' Initialize the NFSP agent.

        Args:
            scope (string): The name scope of NFSPAgent.
            action_num (int): The number of actions.
            state_shape (list): The shape of the state space.
            hidden_layers_sizes (list): The hidden layers sizes for the layers of
              the average policy.
            reservoir_buffer_capacity (int): The size of the buffer for average policy.
            anticipatory_param (float): The hyper-parameter that balances rl/avarage policy.
            batch_size (int): The batch_size for training average policy.
            train_every (int): Train the SL policy every X steps.
            rl_learning_rate (float): The learning rate of the RL agent.
            sl_learning_rate (float): the learning rate of the average policy.
            min_buffer_size_to_learn (int): The minimum buffer size to learn for average policy.
            q_replay_memory_size (int): The memory size of inner DQN agent.
            q_replay_memory_init_size (int): The initial memory size of inner DQN agent.
            q_update_target_estimator_every (int): The frequency of updating target network for
              inner DQN agent.
            q_discount_factor (float): The discount factor of inner DQN agent.
            q_epsilon_start (float): The starting epsilon of inner DQN agent.
            q_epsilon_end (float): the end epsilon of inner DQN agent.
            q_epsilon_decay_steps (int): The decay steps of inner DQN agent.
            q_batch_size (int): The batch size of inner DQN agent.
            q_train_step (int): Train the model every X steps.
            q_mlp_layers (list): The layer sizes of inner DQN agent.
            device (torch.device): Whether to use the cpu or gpu
        '''
        self.use_raw = False
        self._scope = scope
        self._action_num = action_num
        self._state_shape = state_shape
        self._layer_sizes = hidden_layers_sizes + [action_num]
        self._batch_size = batch_size
        self._train_every = train_every
        self._sl_learning_rate = sl_learning_rate
        self._anticipatory_param = anticipatory_param
        self._min_buffer_size_to_learn = min_buffer_size_to_learn

        self._reservoir_buffer = ReservoirBuffer(reservoir_buffer_capacity)
        self._prev_timestep = None
        self._prev_action = None
        self.evaluate_with = evaluate_with

        self.d = {
            0: 'A',
            1: '2',
            2: '3',
            3: '4',
            4: '5',
            5: '6',
            6: '7',
            7: '8',
            8: '9',
            9: 'T',
            10: 'J',
            11: 'Q',
            12: 'K'
        }
        self.s = {0: 's', 1: 'h', 2: 'd', 3: 'c'}
        self.c2n = {
            '2': 2,
            '3': 3,
            '4': 4,
            '5': 5,
            '6': 6,
            '7': 7,
            '8': 8,
            '9': 9,
            'T': 10,
            'J': 11,
            'Q': 12,
            'K': 13,
            'A': 14
        }
        self.late_range = Range(
            '22+, A2s+, K2s+, Q2s+, J2s+, J8, T9, 98, 87, 76s, 65s, 54s, 98s+, K9+, Q8+, J7+, T6s+, A9+'
        )

        if device is None:
            self.device = torch.device(
                'cuda:0' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = device

        # Total timesteps
        self.total_t = 0

        # Step counter to keep track of learning.
        self._step_counter = 0

        # Build the action-value network
        self._rl_agent = DQNAgent(scope+'_dqn', q_replay_memory_size, q_replay_memory_init_size, \
            q_update_target_estimator_every, q_discount_factor, q_epsilon_start, q_epsilon_end, \
            q_epsilon_decay_steps, q_batch_size, action_num, state_shape, q_train_every, q_mlp_layers, \
            rl_learning_rate, device)

        self.MCTS = mcst.MCTS(psutil.cpu_count())

        # Build the average policy supervised model
        self._build_model()

        self.sample_episode_policy()
Example #8
0
class NFSPAgent(object):
    ''' An approximate clone of rlcard.agents.nfsp_agent that uses
    pytorch instead of tensorflow.  Note that this implementation
    differs from Henrich and Silver (2016) in that the supervised
    training minimizes cross-entropy with respect to the stored
    action probabilities rather than the realized actions.
    '''
    def __init__(self,
                 scope,
                 action_num=4,
                 state_shape=None,
                 hidden_layers_sizes=None,
                 reservoir_buffer_capacity=int(1e6),
                 anticipatory_param=0.1,
                 batch_size=256,
                 train_every=1,
                 rl_learning_rate=0.1,
                 sl_learning_rate=0.005,
                 min_buffer_size_to_learn=1000,
                 q_replay_memory_size=30000,
                 q_replay_memory_init_size=1000,
                 q_update_target_estimator_every=1000,
                 q_discount_factor=0.99,
                 q_epsilon_start=0.06,
                 q_epsilon_end=0,
                 q_epsilon_decay_steps=int(1e6),
                 q_batch_size=256,
                 q_train_every=1,
                 q_mlp_layers=None,
                 evaluate_with='average_policy',
                 device=None):
        ''' Initialize the NFSP agent.

        Args:
            scope (string): The name scope of NFSPAgent.
            action_num (int): The number of actions.
            state_shape (list): The shape of the state space.
            hidden_layers_sizes (list): The hidden layers sizes for the layers of
              the average policy.
            reservoir_buffer_capacity (int): The size of the buffer for average policy.
            anticipatory_param (float): The hyper-parameter that balances rl/avarage policy.
            batch_size (int): The batch_size for training average policy.
            train_every (int): Train the SL policy every X steps.
            rl_learning_rate (float): The learning rate of the RL agent.
            sl_learning_rate (float): the learning rate of the average policy.
            min_buffer_size_to_learn (int): The minimum buffer size to learn for average policy.
            q_replay_memory_size (int): The memory size of inner DQN agent.
            q_replay_memory_init_size (int): The initial memory size of inner DQN agent.
            q_update_target_estimator_every (int): The frequency of updating target network for
              inner DQN agent.
            q_discount_factor (float): The discount factor of inner DQN agent.
            q_epsilon_start (float): The starting epsilon of inner DQN agent.
            q_epsilon_end (float): the end epsilon of inner DQN agent.
            q_epsilon_decay_steps (int): The decay steps of inner DQN agent.
            q_batch_size (int): The batch size of inner DQN agent.
            q_train_step (int): Train the model every X steps.
            q_mlp_layers (list): The layer sizes of inner DQN agent.
            device (torch.device): Whether to use the cpu or gpu
        '''
        self.use_raw = False
        self._scope = scope
        self._action_num = action_num
        self._state_shape = state_shape
        self._layer_sizes = hidden_layers_sizes + [action_num]
        self._batch_size = batch_size
        self._train_every = train_every
        self._sl_learning_rate = sl_learning_rate
        self._anticipatory_param = anticipatory_param
        self._min_buffer_size_to_learn = min_buffer_size_to_learn

        self._reservoir_buffer = ReservoirBuffer(reservoir_buffer_capacity)
        self._prev_timestep = None
        self._prev_action = None
        self.evaluate_with = evaluate_with

        self.d = {
            0: 'A',
            1: '2',
            2: '3',
            3: '4',
            4: '5',
            5: '6',
            6: '7',
            7: '8',
            8: '9',
            9: 'T',
            10: 'J',
            11: 'Q',
            12: 'K'
        }
        self.s = {0: 's', 1: 'h', 2: 'd', 3: 'c'}
        self.c2n = {
            '2': 2,
            '3': 3,
            '4': 4,
            '5': 5,
            '6': 6,
            '7': 7,
            '8': 8,
            '9': 9,
            'T': 10,
            'J': 11,
            'Q': 12,
            'K': 13,
            'A': 14
        }
        self.late_range = Range(
            '22+, A2s+, K2s+, Q2s+, J2s+, J8, T9, 98, 87, 76s, 65s, 54s, 98s+, K9+, Q8+, J7+, T6s+, A9+'
        )

        if device is None:
            self.device = torch.device(
                'cuda:0' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = device

        # Total timesteps
        self.total_t = 0

        # Step counter to keep track of learning.
        self._step_counter = 0

        # Build the action-value network
        self._rl_agent = DQNAgent(scope+'_dqn', q_replay_memory_size, q_replay_memory_init_size, \
            q_update_target_estimator_every, q_discount_factor, q_epsilon_start, q_epsilon_end, \
            q_epsilon_decay_steps, q_batch_size, action_num, state_shape, q_train_every, q_mlp_layers, \
            rl_learning_rate, device)

        self.MCTS = mcst.MCTS(psutil.cpu_count())

        # Build the average policy supervised model
        self._build_model()

        self.sample_episode_policy()

    def _build_model(self):
        ''' Build the average policy network
        '''

        # configure the average policy network
        policy_network = AveragePolicyNetwork(self._action_num,
                                              self._state_shape,
                                              self._layer_sizes)
        policy_network = policy_network.to(self.device)
        self.policy_network = policy_network
        self.policy_network.eval()

        # xavier init
        for p in self.policy_network.parameters():
            if len(p.data.shape) > 1:
                nn.init.xavier_uniform_(p.data)

        # configure optimizer
        self.policy_network_optimizer = torch.optim.Adam(
            self.policy_network.parameters(), lr=self._sl_learning_rate)

    def feed(self, ts):
        ''' Feed data to inner RL agent

        Args:
            ts (list): A list of 5 elements that represent the transition.
        '''
        self._rl_agent.feed(ts)
        self.total_t += 1
        # print(len(self._reservoir_buffer))
        if self.total_t > 0 and len(
                self._reservoir_buffer
        ) >= self._min_buffer_size_to_learn and self.total_t % self._train_every == 0:
            sl_loss = self.train_sl()
            rlcopy = copy.copy(self._rl_agent)
            rlcopy.memory = None
            rlcopy.target_estimator = None
            rlcopy.device = self.device
            self.obj_ref = ray.put(rlcopy.eval_step)
            print('\r\nINFO - Agent {}, step {}, sl-loss: {}'.format(
                self._scope, self.total_t, sl_loss),
                  end='\n\n')

    def step(self, state):
        ''' Returns the action to be taken.

        Args:
            state (dict): The current state

        Returns:
            action (int): An action id
        '''

        cards = ''
        pos = 0

        for i in state['obs']:
            if (i == 1 and pos < 52):
                cards = cards + self.d[pos % 13] + '' + self.s[pos // 13]
            pos += 1
        # if(len(cards) == 4 and not Combo(cards) in self.late_range.combos):
        #     return 0, 1

        tab = []
        handcards = cards

        for i in state['public_cards']:
            tab.append((self.c2n[i[1]], i[0].lower()))
        hand = []
        for i in range(0, len(handcards), 2):
            hand.append((self.c2n[handcards[i]], handcards[i + 1]))

        # print(tab)

        hand = [x for x in hand if x not in tab]
        stt = mcst.PokerState(hand, tab, state['cur'], state['opp'],
                              abs(state['obs'][-2] - state['obs'][-1]),
                              state['obs'][-2] + state['obs'][-1],
                              state['obs'][52], state['obs'][53])
        # print(hand, tab, 250 - min(state['obs'][-2:]), 250 - max(state['obs'][-2:]), abs(state['obs'][-2] - state['obs'][-1]), state['obs'][-2] + state['obs'][-1], min(state['obs'][-2:]), max(state['obs'][-2:]))
        # mcst.PokerState()

        obs = state['obs']
        legal_actions = state['legal_actions']

        if self._mode == MODE.best_response:
            #            now = time.clock()

            probs = self._rl_agent.predict(obs)

            # for the early hands, we want to perform shallow searches. Too much variability to "investigate" any potential strategy
            # gc.disable()
            # if len(tab) == 0:
            #     m, p = self.MCTS.UCT(rootstate = stt, itermax = 16384, processes = 512, verbose = False)

            # # for each position after, our situation becomes more certain and we can parse deeper into the tree/investigate more indepth strategies
            # if len(tab) == 3:
            #     m, p = self.MCTS.UCT(rootstate = stt, itermax = 16384, processes = 256, verbose = False)

            # if len(tab) == 4:
            #     m, p = self.MCTS.UCT(rootstate = stt, itermax = 16384, processes = 128, verbose = False)

            # if len(tab) == 5:
            #     m, p = self.MCTS.UCT(rootstate = stt, itermax = 16384, processes = 64, verbose = False)

            if len(tab) == 0:
                m, p = self.MCTS.UCT(rootstate=stt,
                                     itermax=100,
                                     processes=128,
                                     verbose=False)

            # for each position after, our situation becomes more certain and we can parse deeper into the tree/investigate more indepth strategies
            if len(tab) == 3:
                m, p = self.MCTS.UCT(rootstate=stt,
                                     itermax=100,
                                     processes=64,
                                     verbose=False)

            if len(tab) == 4:
                m, p = self.MCTS.UCT(rootstate=stt,
                                     itermax=100,
                                     processes=32,
                                     verbose=False)

            if len(tab) == 5:
                m, p = self.MCTS.UCT(rootstate=stt,
                                     itermax=100,
                                     processes=32,
                                     verbose=False)


#            print(time.clock() - now)

            probs = copy.deepcopy(probs)
            probs[m] += 1.5
            probs = remove_illegal(probs, legal_actions)

            if (probs[1] != 0):
                probs[0] = 0

            probs /= sum(probs)
            self._add_transition(obs, probs)

        elif self._mode == MODE.average_policy:
            probs = self._act(obs)

        probs = remove_illegal(probs, legal_actions)
        action = np.random.choice(len(probs), p=probs)

        return action

    def eval_step(self, state):
        ''' Use the average policy for evaluation purpose

        Args:
            state (dict): The current state.

        Returns:
            action (int): An action id.
        '''

        cards = ''
        pos = 0

        for i in state['obs']:
            if (i == 1 and pos < 52):
                cards = cards + self.d[pos % 13] + '' + self.s[pos // 13]
            pos += 1
        # if(len(cards) == 4 and not Combo(cards) in self.late_range.combos):
        #     return 0, 1

        tab = []
        handcards = cards

        for i in state['public_cards']:
            tab.append((self.c2n[i[1]], i[0].lower()))
        hand = []
        for i in range(0, len(handcards), 2):
            hand.append((self.c2n[handcards[i]], handcards[i + 1]))

        # print(tab)

        hand = [x for x in hand if x not in tab]
        print(state)
        stt = mcst.PokerState(hand, tab, state['cur'], state['opp'],
                              abs(state['obs'][-2] - state['obs'][-1]),
                              state['obs'][-2] + state['obs'][-1],
                              state['obs'][52], state['obs'][53])

        if self.evaluate_with == 'best_response':
            legal_actions = state['legal_actions']

            action, probs = self._rl_agent.eval_step(state)
            print(probs, '------------')
            # gc.disable()
            # if len(tab) == 0:
            #     m, p = self.MCTS.UCT(rootstate = stt, itermax = 65536, processes = 128, verbose = False)

            # # for each position after, our situation becomes more certain and we can parse deeper into the tree/investigate more indepth strategies
            # if len(tab) == 3:
            #     m, p = self.MCTS.UCT(rootstate = stt, itermax = 32768, processes = 64, verbose = False)

            # if len(tab) == 4:
            #     m, p = self.MCTS.UCT(rootstate = stt, itermax = 32768, processes = 32, verbose = False)

            # if len(tab) == 5:
            #     m, p = self.MCTS.UCT(rootstate = stt, itermax = 32768, processes = 32, verbose = False)

            m, p = self.MCTS.UCT(rootstate=stt,
                                 itermax=1048576 // 8,
                                 processes=8,
                                 verbose=False)
            probs = copy.deepcopy(probs)
            print(probs, m)
            probs[m] += 1.5

            probs = remove_illegal(probs, legal_actions)

            if (probs[1] != 0):
                probs[0] = 0

            probs /= sum(probs)

            action = np.random.choice(len(probs), p=probs)
            print(m, probs)
            # probs[m] += 1
            # probs = remove_illegal(probs, legal_actions)
            # probs /= sum(probs)

        elif self.evaluate_with == 'average_policy':
            obs = state['obs']
            legal_actions = state['legal_actions']
            probs = self._act(obs)
            probs = remove_illegal(probs, legal_actions)
            action = np.random.choice(len(probs), p=probs)
        else:
            raise ValueError(
                "'evaluate_with' should be either 'average_policy' or 'best_response'."
            )
        return action, probs

    def sample_episode_policy(self):
        ''' Sample average/best_response policy
        '''
        if np.random.rand() < self._anticipatory_param:
            self._mode = MODE.best_response
        else:
            self._mode = MODE.average_policy

    def _act(self, info_state):
        ''' Predict action probability givin the observation and legal actions
            Not connected to computation graph
        Args:
            info_state (numpy.array): An obervation.

        Returns:
            action_probs (numpy.array): The predicted action probability.
        '''
        info_state = np.expand_dims(info_state, axis=0)
        info_state = torch.from_numpy(info_state).float().to(self.device)

        with torch.no_grad():
            log_action_probs = self.policy_network(info_state).numpy()

        action_probs = np.exp(log_action_probs)[0]

        return action_probs

    def _add_transition(self, state, probs):
        ''' Adds the new transition to the reservoir buffer.

        Transitions are in the form (state, probs).

        Args:
            state (numpy.array): The state.
            probs (numpy.array): The probabilities of each action.
        '''
        transition = Transition(info_state=state, action_probs=probs)
        self._reservoir_buffer.add(transition)

    def train_sl(self):
        ''' Compute the loss on sampled transitions and perform a avg-network update.

        If there are not enough elements in the buffer, no loss is computed and
        `None` is returned instead.

        Returns:
            loss (float): The average loss obtained on this batch of transitions or `None`.
        '''
        if (len(self._reservoir_buffer) < self._batch_size or
                len(self._reservoir_buffer) < self._min_buffer_size_to_learn):
            return None

        transitions = self._reservoir_buffer.sample(self._batch_size)
        info_states = [t.info_state for t in transitions]
        action_probs = [t.action_probs for t in transitions]

        self.policy_network_optimizer.zero_grad()
        self.policy_network.train()

        # (batch, state_size)
        info_states = torch.from_numpy(np.array(info_states)).float().to(
            self.device)

        # (batch, action_num)
        eval_action_probs = torch.from_numpy(
            np.array(action_probs)).float().to(self.device)

        # (batch, action_num)
        log_forecast_action_probs = self.policy_network(info_states)

        ce_loss = -(eval_action_probs *
                    log_forecast_action_probs).sum(dim=-1).mean()
        ce_loss.backward()

        self.policy_network_optimizer.step()
        ce_loss = ce_loss.item()
        self.policy_network.eval()

        return ce_loss

    def get_state_dict(self):
        ''' Get the state dict to save models

        Returns:
            (dict): A dict of model states
        '''
        state_dict = self._rl_agent.get_state_dict()
        state_dict[self._scope] = self.policy_network.state_dict()
        return state_dict

    def load(self, checkpoint):
        ''' Load model

        Args:
            checkpoint (dict): the loaded state
        '''
        self.policy_network.load_state_dict(checkpoint[self._scope])
memory_init_size = 1000

# Train the agent every X steps
train_every = 1

# The paths for saving the logs and learning curves
log_dir = './experiments/scopone_result/'

# Set a global seed
set_global_seed(0)

agents = [
    DQNAgent(scope=f'dqn_{i}',
             action_num=env.action_num,
             replay_memory_init_size=memory_init_size,
             train_every=train_every,
             state_shape=env.state_shape,
             mlp_layers=[128, 128],
             device=torch.device('cpu')) for i in range(env.player_num)
]
env.set_agents(agents)
eval_env.set_agents(agents)

logger = Logger(log_dir)

for episode in range(episode_num):
    # Generate data from the environment
    trajectories, _ = env.run(is_training=True)

    # Feed transitions into agent memory, and train the agent
    for agent_idx, traj in enumerate(trajectories):
memory_init_size = 1000
norm_step = 100

# The paths for saving the logs and learning curves
root_path = './experiments/limit_holdem_dqn_pytorch_result/'
log_path = root_path + 'log.txt'
csv_path = root_path + 'performance.csv'
figure_path = root_path + 'figures/'

# Set a global seed
set_global_seed(0)

agent = DQNAgent(scope='dqn',
                 action_num=env.action_num,
                 replay_memory_size=int(1e5),
                 replay_memory_init_size=memory_init_size,
                 norm_step=norm_step,
                 state_shape=env.state_shape,
                 mlp_layers=[512, 512],
                 device=torch.device('cpu'))

random_agent = RandomAgent(action_num=eval_env.action_num)

env.set_agents([agent, random_agent])
eval_env.set_agents([agent, random_agent])

# Count the number of steps
step_counter = 0

# Init a Logger to plot the learning curve
logger = Logger(xlabel='timestep',
                ylabel='reward',
Example #11
0
memory_init_size = 1000

# Train the agent every X steps
train_every = 1

# The paths for saving the logs and learning curves
log_dir = './experiments/doudizhu_dqn_result/'

# Set a global seed
set_global_seed(0)

# Set up the agents
agent = DQNAgent(
                scope='dqn',
                action_num=env.action_num,
                replay_memory_init_size=memory_init_size,
                train_every=train_every,
                state_shape=env.state_shape,
                mlp_layers=[512,512])
random_agent = RandomAgent(action_num=eval_env.action_num)

env.set_agents([agent, random_agent, random_agent])
eval_env.set_agents([agent, random_agent, random_agent])


# Init a Logger to plot the learning curve
logger = Logger(log_dir)

for episode in range(episode_num):

    # Generate data from the environment
Example #12
0
    'single_agent_mode': False,
    'active_player': 0,
    'record_action': False,
}

env = EuchreEnv(DEFAULT_CONFIG)
eval_env = EuchreEnv(DEFAULT_CONFIG)

# All random = 0.00411
# Rule Agent Alone = 0.09185
# Rule Agent Team = 0.19251
# Bid Rule = 0.0438

agent = DQNAgent(scope='dqn',
                 action_num=env.action_num,
                 state_shape=env.state_shape,
                 batch_size=64,
                 mlp_layers=[64])

env.set_agents([
    agent,
    RandomAgent(action_num=env.action_num),
    RandomAgent(action_num=env.action_num),
    RandomAgent(action_num=env.action_num)
])

eval_env.set_agents([
    agent,
    RandomAgent(action_num=env.action_num),
    RandomAgent(action_num=env.action_num),
    RandomAgent(action_num=env.action_num)