Example #1
0
 def __init__(self):
     ''' Load pretrained model
     '''
     env = rlcard.make('leduc-holdem')
     self.agent = CFRAgent(env,
                           model_path=os.path.join(ROOT_PATH,
                                                   'leduc_holdem_cfr'))
     self.agent.load()
Example #2
0
def train(args):
    # Make environments, CFR only supports Leduc Holdem
    env = rlcard.make('leduc-holdem', config={'seed': 0, 'allow_step_back':True})
    eval_env = rlcard.make('leduc-holdem', config={'seed': 0})

    # Seed numpy, torch, random
    set_seed(args.seed)

    # Initilize CFR Agent
    agent = CFRAgent(env, os.path.join(args.log_dir, 'cfr_model'))
    agent.load()  # If we have saved model, we first load the model

    # Evaluate CFR against random
    eval_env.set_agents([agent, RandomAgent(num_actions=env.num_actions)])

    # Start training
    with Logger(args.log_dir) as logger:
        for episode in range(args.num_episodes):
            agent.train()
            print('\rIteration {}'.format(episode), end='')
            # Evaluate the performance. Play with Random agents.
            if episode % args.evaluate_every == 0:
                agent.save() # Save model
                logger.log_performance(env.timestep, tournament(eval_env, args.num_eval_games)[0])

        # Get the paths
        csv_path, fig_path = logger.csv_path, logger.fig_path
    # Plot the learning curve
    plot_curve(csv_path, fig_path, 'cfr')
Example #3
0
def load_model(model_path, env=None, position=None, device=None):
    if os.path.isfile(model_path):  # Torch model
        import torch
        agent = torch.load(model_path, map_location=device)
        agent.set_device(device)
    elif os.path.isdir(model_path):  # CFR model
        from rlcard.agents import CFRAgent
        agent = CFRAgent(env, model_path)
        agent.load()
    elif model_path == 'random':  # Random model
        from rlcard.agents import RandomAgent
        agent = RandomAgent(num_actions=env.num_actions)
    else:  # A model in the model zoo
        from rlcard import models
        agent = models.load(model_path).agents[position]

    return agent
Example #4
0
class LeducHoldemCFRModel(Model):
    ''' A pretrained model on Leduc Holdem with CFR (chance sampling)
    '''

    def __init__(self):
        ''' Load pretrained model
        '''
        env = rlcard.make('leduc-holdem')
        self.agent = CFRAgent(env, model_path=os.path.join(ROOT_PATH, 'leduc_holdem_cfr'))
        self.agent.load()
    @property
    def agents(self):
        ''' Get a list of agents for each position in a the game

        Returns:
            agents (list): A list of agents

        Note: Each agent should be just like RL agent with step and eval_step
              functioning well.
        '''
        return [self.agent, self.agent]
Example #5
0
def train_leduc():
    # Make environment and enable human mode
    env = rlcard.make('leduc-holdem', config={'seed': 0, 'allow_step_back':True})
    eval_env = rlcard.make('leduc-holdem', config={'seed': 0})

    # Set the iterations numbers and how frequently we evaluate the performance and save model
    evaluate_every = 100
    save_plot_every = 1000
    evaluate_num = 10000
    episode_num = 10000

    # The paths for saving the logs and learning curves
    log_dir = './experiments/leduc_holdem_cfr_result/'

    # Set a global seed
    set_global_seed(0)

    model_path = 'models/leduc_holdem_cfr'
    # Initilize CFR Agent
    agent = CFRAgent(env,model_path=model_path)
    agent.load()  # If we have saved model, we first load the model

    # Evaluate CFR against pre-trained NFSP
    eval_env.set_agents([agent, models.load('leduc-holdem-nfsp').agents[0]])

    # Init a Logger to plot the learning curve
    logger = Logger(log_dir)

    for episode in range(episode_num):
        agent.train()
        print('\rIteration {}'.format(episode), end='')
        # Evaluate the performance. Play with NFSP agents.
        if episode % evaluate_every == 0:
            agent.save() # Save model
            logger.log_performance(env.timestep, tournament(eval_env, evaluate_num)[0])

    # Close files in the logger
    logger.close_files()

    # Plot the learning curve
    logger.plot('CFR')
Example #6
0
eval_env = rlcard.make('leduc-holdem', config={'seed': 0})

# Set the iterations numbers and how frequently we evaluate the performance and save model
evaluate_every = 100
save_plot_every = 1000
evaluate_num = 10000
episode_num = 10000

# The paths for saving the logs and learning curves
log_dir = './experiments/leduc_holdem_cfr_result/'

# Set a global seed
set_global_seed(0)

# Initilize CFR Agent
agent = CFRAgent(env)
agent.load()  # If we have saved model, we first load the model

# Evaluate CFR against pre-trained NFSP
eval_env.set_agents([agent, models.load('leduc-holdem-nfsp').agents[0]])

# Init a Logger to plot the learning curve
logger = Logger(log_dir)

for episode in range(episode_num):
    agent.train()
    print('\rIteration {}'.format(episode), end='')
    # Evaluate the performance. Play with NFSP agents.
    if episode % evaluate_every == 0:
        agent.save()  # Save model
        logger.log_performance(env.timestep,
Example #7
0
# The intial memory size
memory_init_size = 1000

# Train the agent every X steps
train_every = 1

# The paths for saving the logs and learning curves
log_dir = './experiments/cfr_result/'

# Set a global seed
set_global_seed(0)

# Set up the agents
agents = []
for i in range(env.player_num):
    agent = CFRAgent(env=env)
    agents.append(agent)
random_agent = RandomAgent(action_num=eval_env.action_num)

env.set_agents(agents)
eval_env.set_agents([agents[0], random_agent])

# Init a Logger to plot the learning curve
logger = Logger(log_dir)

for episode in range(episode_num):
    for agent in agents:
        agent.train()

    print('\rIteration {}'.format(episode), end='')
    # Evaluate the performance. Play with random agents.
Example #8
0
episode_num = 100000

# The intial memory size
memory_init_size = 1000

# Train the agent every X steps
train_every = 1

# The paths for saving the logs and learning curves
log_dir = './experiments/cfr_random_result/'

# Set a global seed
set_global_seed(0)

# Set up the agents
agent = CFRAgent(env=env, model_path='./cfr_random_model')
random_agent = RandomAgent(action_num=eval_env.action_num)

env.set_agents([agent, random_agent])
eval_env.set_agents([agent, random_agent])

# Init a Logger to plot the learning curve
logger = Logger(log_dir)

for episode in range(episode_num):
    agent.train()

    print('\rIteration {}'.format(episode), end='')
    # Evaluate the performance. Play with random agents.
    if episode % evaluate_every == 0:
        agent.save()  # Save model