Example #1
0
    def setup(self) -> None:
        super().setup()

        self.shuffle_dim2_unstable = self.df_baseline.sort_values(
            dim_col(2), kind="quicksort").index.values
        self.shuffle_dim2_stable = self.df_baseline.sort_values(
            dim_col(2), kind="mergesort").index.values
Example #2
0
    def setup(self):
        super().setup()

        df_rle_wo_dims = self.df_rle.copy()
        for d in range(3):
            df_rle_wo_dims[dim_col(d)] = self.df_baseline[dim_col(d)].copy()
        self.df_rle_wo_dims = df_rle_wo_dims
Example #3
0
 def time_groupby2_sum_const12_rle(self):
     with self.ignore_performance_warnings():
         self.df_rle_wo_dims.groupby(dim_col(2))[const_col([1, 2])].sum()
Example #4
0
 def time_groupby2_sum_const12_baseline(self):
     self.df_baseline.groupby(dim_col(2))[const_col([1, 2])].sum()
Example #5
0
 def time_key2_opsum_const12_baseline(self) -> None:
     self.df_baseline.groupby(dim_col(2))[const_col([1, 2])].sum()
Example #6
0
 def test_dim_value_counts(self, df: pd.DataFrame, d: int) -> None:
     assert (df[dim_col(d)].value_counts() == SIZE**(N_DIMS - 1)).all()
Example #7
0
 def test_dim_nunique(self, df: pd.DataFrame, d: int) -> None:
     assert df[dim_col(d)].nunique() == SIZE
Example #8
0
def test_dim_col(d: int, expected: str) -> None:
    actual = dim_col(d)
    assert actual == expected
Example #9
0
 def test_dims_sorted(self, df: pd.DataFrame, d: int) -> None:
     delta = df[dim_col(d)].values[1:] - df[dim_col(d)].values[:-1]
     assert ((delta == 0) | (delta == 1) | (delta == -(SIZE - 1))).all()