Example #1
0
 def test_chained_call():
     fake_globals = dict(TestClass=TestClass)
     instrument.stub(fake_globals)
     modified = fake_globals["TestClass"]
     it.assertIsInstance(modified().arr[0], instrument.StubMethodCall)
     it.assertIsInstance(modified().compound_arr[0]["a"], instrument.StubMethodCall)
     it.assertEqual(instrument.concretize(modified().arr[0]), 1)
Example #2
0
 def test_concretize():
     it.assertEqual(instrument.concretize([5]), [5])
     it.assertEqual(instrument.concretize((5,)), (5,))
     fake_globals = dict(TestClass=TestClass)
     instrument.stub(fake_globals)
     modified = fake_globals["TestClass"]
     it.assertIsInstance(modified, instrument.StubClass)
     it.assertIsInstance(modified(), instrument.StubObject)
     it.assertEqual(instrument.concretize((5,)), (5,))
     it.assertIsInstance(instrument.concretize(modified()), TestClass)
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
from rllab.envs.mujoco.walker2d_env import Walker2DEnv
from rllab.envs.normalized_env import normalize
from rllab.misc.instrument import stub, run_experiment_lite
from sandbox.rocky.tf.algos.vpg import VPG
from sandbox.rocky.tf.algos.trpo import TRPO
from sandbox.rocky.tf.policies.minimal_gauss_mlp_policy import GaussianMLPPolicy
from sandbox.rocky.tf.envs.base import TfEnv

import csv
import joblib
import numpy as np
import pickle
import tensorflow as tf

stub(globals())

# horizon of 100
initial_params_file1 = 'data/local/vpg-maml-point100/trpomaml1_fbs20_mbs20_flr_0.5metalr_0.01_step11/params.pkl'
initial_params_file2 = 'data/local/vpg-maml-point100/vpgrandenv/params.pkl'
initial_params_file3 = 'data/local/vpg-maml-point100/maml0_fbs20_mbs20_flr_1.0metalr_0.01_step11/params.pkl'
initial_params_file4 = 'data/local/vpg-maml-point100/oracleenv2/params.pkl'

test_num_goals = 40
np.random.seed(1)
goals = np.random.uniform(-0.5, 0.5, size=(test_num_goals, 2, ))
print(goals)

goals = [goals[6]]

Example #4
0
from rllab.algos.reps import REPS
from rllab.envs.mujoco.peg_env import PegEnv
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
from rllab.envs.normalized_env import normalize
from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy
from rllab.misc.instrument import stub, run_experiment_lite
from rllab.misc import instrument
import sys

instrument.stub(globals())

env = normalize(PegEnv())

policy = GaussianMLPPolicy(
    env_spec=env.spec,
    # The neural network policy should have two hidden layers, each with 42 hidden units.
    hidden_sizes=(42, 42)
)

baseline = LinearFeatureBaseline(env_spec=env.spec)

vg = instrument.VariantGenerator()
vg.add("seed", range(3))

variants = vg.variants()

for variant in variants:
    algo = REPS(
        env=env,
        policy=policy,
        baseline=baseline,
Example #5
0
from sandbox.rocky.tf.algos.trpo import TRPO
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
from rllab.envs.box2d.cartpole_env import CartpoleEnv
from rllab.envs.normalized_env import normalize
from sandbox.rocky.tf.optimizers.conjugate_gradient_optimizer import ConjugateGradientOptimizer
from sandbox.rocky.tf.optimizers.conjugate_gradient_optimizer import FiniteDifferenceHvp
from sandbox.rocky.tf.policies.gaussian_mlp_policy import GaussianMLPPolicy
from sandbox.rocky.tf.envs.base import TfEnv
from rllab.misc.instrument import stub, run_experiment_lite
from rllab.envs.gym_env import GymEnv

stub(globals())

env = TfEnv(normalize(GymEnv("Swimmer-v1", record_video=False)))

policy = GaussianMLPPolicy(
    name="policy",
    env_spec=env.spec,
    # The neural network policy should have two hidden layers, each with 64 hidden units.
    hidden_sizes=(64, 64),
)

baseline = LinearFeatureBaseline(env_spec=env.spec)

algo = TRPO(
    env=env,
    policy=policy,
    baseline=baseline,
    batch_size=50000,
    max_path_length=env.horizon,
    n_itr=100,
Example #6
0
def run_FaReLI(input_feed=None):
    beta_adam_steps_list = [(1,50)]
    # beta_curve = [250,250,250,250,250,5,5,5,5,1,1,1,1,] # make sure to check maml_experiment_vars
    # beta_curve = [1000] # make sure to check maml_experiment_vars
    adam_curve = [250,249,248,247,245,50,50,10] # make sure to check maml_experiment_vars
    # adam_curve = None

    fast_learning_rates = [1.0]
    baselines = ['linear',]  # linear GaussianMLP MAMLGaussianMLP zero
    env_option = ''
    # mode = "ec2"
    mode = "local"
    extra_input = "onehot_exploration" # "onehot_exploration" "gaussian_exploration"
    # extra_input = None
    extra_input_dim = 5
    # extra_input_dim = None
    goals_suffixes = ["_200_40_1"] #,"_200_40_2", "_200_40_3","_200_40_4"]
    # goals_suffixes = ["_1000_40"]

    fast_batch_size_list = [20]  # 20 # 10 works for [0.1, 0.2], 20 doesn't improve much for [0,0.2]  #inner grad update size
    meta_batch_size_list = [40]  # 40 @ 10 also works, but much less stable, 20 is fairly stable, 40 is more stable
    max_path_length = 100  # 100
    num_grad_updates = 1
    meta_step_size = 0.01
    pre_std_modifier_list = [1.0]
    post_std_modifier_train_list = [0.00001]
    post_std_modifier_test_list = [0.00001]
    l2loss_std_mult_list = [1.0]
    importance_sampling_modifier_list = ['']  #'', 'clip0.5_'
    limit_demos_num_list = [1]  # 40
    test_goals_mult = 1
    bas_lr = 0.01 # baseline learning rate
    momentum=0.5
    bas_hnl = tf.nn.relu
    baslayers_list = [(32,32), ]

    basas = 60 # baseline adam steps
    use_corr_term = True
    seeds = [1] #,2,3,4,5]
    envseeds = [6]
    use_maml = True
    test_on_training_goals = False
    for goals_suffix in goals_suffixes:
        for envseed in envseeds:
            for seed in seeds:
                for baslayers in baslayers_list:
                    for fast_batch_size in fast_batch_size_list:
                        for meta_batch_size in meta_batch_size_list:
                            for ism in importance_sampling_modifier_list:
                                for limit_demos_num in limit_demos_num_list:
                                    for l2loss_std_mult in l2loss_std_mult_list:
                                        for post_std_modifier_train in post_std_modifier_train_list:
                                            for post_std_modifier_test in post_std_modifier_test_list:
                                                for pre_std_modifier in pre_std_modifier_list:
                                                    for fast_learning_rate in fast_learning_rates:
                                                        for beta_steps, adam_steps in beta_adam_steps_list:
                                                            for bas in baselines:
                                                                stub(globals())
                                                                tf.set_random_seed(seed)
                                                                np.random.seed(seed)
                                                                rd.seed(seed)
                                                                env = TfEnv(normalize(Reacher7DofMultitaskEnv(envseed=envseed)))
                                                                exp_name = str(
                                                                    'R7_IL'
                                                                    # +time.strftime("%D").replace("/", "")[0:4]
                                                                    + goals_suffix + "_"
                                                                    + str(seed)
                                                                    # + str(envseed)
                                                                    + ("" if use_corr_term else "nocorr")
                                                                    # + str(int(use_maml))
                                                                    + ('_fbs' + str(fast_batch_size) if fast_batch_size!=20 else "")
                                                                    + ('_mbs' + str(meta_batch_size) if meta_batch_size!=40 else "")
                                                                    + ('_flr' + str(fast_learning_rate) if fast_learning_rate!=1.0 else "")
                                                                    + '_dem' + str(limit_demos_num)
                                                                    + ('_ei' + str(extra_input_dim) if type(
                                                                        extra_input_dim) == int else "")
                                                                    # + '_tgm' + str(test_goals_mult)
                                                                    #     +'metalr_'+str(meta_step_size)
                                                                    #     +'_ngrad'+str(num_grad_updates)
                                                                    + ("_bs" + str(beta_steps) if beta_steps != 1 else "")
                                                                    + "_as" + str(adam_steps)
                                                                    # +"_net" + str(net_size[0])
                                                                    # +"_L2m" + str(l2loss_std_mult)
                                                                    + ("_prsm" + str(
                                                                        pre_std_modifier) if pre_std_modifier != 1 else "")
                                                                    # + "_pstr" + str(post_std_modifier_train)
                                                                    # + "_posm" + str(post_std_modifier_test)
                                                                    #  + "_l2m" + str(l2loss_std_mult)
                                                                    + ("_" + ism if len(ism) > 0 else "")
                                                                    + "_bas" + bas[0]
                                                                    # +"_tfbe" # TF backend for baseline
                                                                    # +"_qdo" # quad dist optimizer
                                                                    + (("_bi" if bas_hnl == tf.identity else (
                                                                        "_brel" if bas_hnl == tf.nn.relu else "_bth"))  # identity or relu or tanh for baseline
                                                                       # + "_" + str(baslayers)  # size
                                                                       + "_baslr" + str(bas_lr)
                                                                       + "_basas" + str(basas) if bas[0] in ["G",
                                                                                                             "M"] else "")  # baseline adam steps
                                                                    + ("r" if test_on_training_goals else "")
                                                                    + "_" + time.strftime("%d%m_%H_%M"))



                                                                policy = MAMLGaussianMLPPolicy(
                                                                    name="policy",
                                                                    env_spec=env.spec,
                                                                    grad_step_size=fast_learning_rate,
                                                                    hidden_nonlinearity=tf.nn.relu,
                                                                    hidden_sizes=(100, 100),
                                                                    std_modifier=pre_std_modifier,
                                                                    # metalearn_baseline=(bas == "MAMLGaussianMLP"),
                                                                    extra_input_dim=(0 if extra_input is None else extra_input_dim),
                                                                )
                                                                if bas == 'zero':
                                                                    baseline = ZeroBaseline(env_spec=env.spec)
                                                                elif bas == 'MAMLGaussianMLP':
                                                                    baseline = MAMLGaussianMLPBaseline(env_spec=env.spec,
                                                                                                       learning_rate=bas_lr,
                                                                                                       hidden_sizes=baslayers,
                                                                                                       hidden_nonlinearity=bas_hnl,
                                                                                                       repeat=basas,
                                                                                                       repeat_sym=basas,
                                                                                                       momentum=momentum,
                                                                                                       extra_input_dim=( 0 if extra_input is None else extra_input_dim),

                                                                                                       # learn_std=False,
                                                                                                       # use_trust_region=False,
                                                                                                       # optimizer=QuadDistExpertOptimizer(
                                                                                                       #      name="bas_optimizer",
                                                                                                       #     #  tf_optimizer_cls=tf.train.GradientDescentOptimizer,
                                                                                                       #     #  tf_optimizer_args=dict(
                                                                                                       #     #      learning_rate=bas_lr,
                                                                                                       #     #  ),
                                                                                                       #     # # tf_optimizer_cls=tf.train.AdamOptimizer,
                                                                                                       #     # max_epochs=200,
                                                                                                       #     # batch_size=None,
                                                                                                       #      adam_steps=basas
                                                                                                       #     )
                                                                                                       )

                                                                elif bas == 'linear':
                                                                    baseline = LinearFeatureBaseline(env_spec=env.spec)
                                                                elif "GaussianMLP" in bas:
                                                                    baseline = GaussianMLPBaseline(env_spec=env.spec,
                                                                                                   regressor_args=dict(
                                                                                                       hidden_sizes=baslayers,
                                                                                                       hidden_nonlinearity=bas_hnl,
                                                                                                       learn_std=False,
                                                                                                       # use_trust_region=False,
                                                                                                       # normalize_inputs=False,
                                                                                                       # normalize_outputs=False,
                                                                                                       optimizer=QuadDistExpertOptimizer(
                                                                                                           name="bas_optimizer",
                                                                                                           #  tf_optimizer_cls=tf.train.GradientDescentOptimizer,
                                                                                                           #  tf_optimizer_args=dict(
                                                                                                           #      learning_rate=bas_lr,
                                                                                                           #  ),
                                                                                                           # # tf_optimizer_cls=tf.train.AdamOptimizer,
                                                                                                           # max_epochs=200,
                                                                                                           # batch_size=None,
                                                                                                           adam_steps=basas,
                                                                                                           use_momentum_optimizer=True,
                                                                                                       )))
                                                                algo = MAMLIL(
                                                                    env=env,
                                                                    policy=policy,
                                                                    baseline=baseline,
                                                                    batch_size=fast_batch_size,  # number of trajs for alpha grad update
                                                                    max_path_length=max_path_length,
                                                                    meta_batch_size=meta_batch_size,  # number of tasks sampled for beta grad update
                                                                    num_grad_updates=num_grad_updates,  # number of alpha grad updates
                                                                    n_itr=800, #100
                                                                    make_video=True,
                                                                    use_maml=use_maml,
                                                                    use_pooled_goals=True,
                                                                    use_corr_term=use_corr_term,
                                                                    test_on_training_goals=test_on_training_goals,
                                                                    metalearn_baseline=(bas=="MAMLGaussianMLP"),
                                                                    # metalearn_baseline=False,
                                                                    limit_demos_num=limit_demos_num,
                                                                    test_goals_mult=test_goals_mult,
                                                                    step_size=meta_step_size,
                                                                    plot=False,
                                                                    beta_steps=beta_steps,
                                                                    adam_curve=adam_curve,
                                                                    adam_steps=adam_steps,
                                                                    pre_std_modifier=pre_std_modifier,
                                                                    l2loss_std_mult=l2loss_std_mult,
                                                                    importance_sampling_modifier=MOD_FUNC[ism],
                                                                    post_std_modifier_train=post_std_modifier_train,
                                                                    post_std_modifier_test=post_std_modifier_test,
                                                                    expert_trajs_dir=EXPERT_TRAJ_LOCATION_DICT[env_option+"."+mode+goals_suffix+("_"+str(extra_input_dim) if type(extra_input_dim) == int else "")],
                                                                    expert_trajs_suffix=("_"+str(extra_input_dim) if type(extra_input_dim) == int else ""),
                                                                    seed=seed,
                                                                    extra_input=extra_input,
                                                                    extra_input_dim=(0 if extra_input is None else extra_input_dim),
                                                                    input_feed=input_feed,
                                                                    run_on_pr2=False,

                                                                )
                                                                run_experiment_lite(
                                                                    algo.train(),
                                                                    n_parallel=1,
                                                                    snapshot_mode="last",
                                                                    python_command='python3',
                                                                    seed=seed,
                                                                    exp_prefix=str('R7_IL_'
                                                                                   +time.strftime("%D").replace("/", "")[0:4]),
                                                                    exp_name=exp_name,
                                                                    plot=False,
                                                                    sync_s3_pkl=True,
                                                                    mode=mode,
                                                                    terminate_machine=True,
                                                                )