Example #1
0
def main():
    args = parser.parse_args()

    env = GridWorld(display=args.render,
                    obstacles=[np.asarray([1, 2])],
                    step_wrapper=utils.step_wrapper,
                    reset_wrapper=utils.reset_wrapper,
                    stepReward=.01)

    model = ActorCritic(env,
                        gamma=0.99,
                        log_interval=100,
                        max_episodes=10**4,
                        max_ep_length=30)

    if args.policy_path is not None:
        model.policy.load(args.policy_path)

    if not args.play:
        model.train()

        if not args.dont_save:
            model.policy.save('./saved-models/')

    if args.play:
        env.tickSpeed = 15
        assert args.policy_path is not None, 'pass a policy to play from!'

        model.generate_trajectory(args.num_trajs, './trajs/ac_gridworld/')
Example #2
0
def main():
    args = parser.parse_args()
    mp.set_start_method('spawn')

    env = GridWorld(display=False,
                    obstacles=[np.asarray([1, 2])],
                    reset_wrapper=reset_wrapper,
                    step_wrapper=step_wrapper)

    model = ActorCritic(env,
                        gamma=0.99,
                        log_interval=100,
                        max_episodes=10**4,
                        max_ep_length=30)

    if args.policy_path is not None:
        model.policy.load(args.policy_path)

    if not args.play:
        model.train_mp(n_jobs=4)

        if not args.dont_save:
            model.policy.save('./saved-models/')

    if args.play:
        assert args.policy_path is not None, 'pass a policy to play from!'

        model.generate_trajectory(args.num_trajs, './trajs/mp_gridworld/')
Example #3
0
def main():
    args = parser.parse_args()

    if args.render:
        from envs.gridworld import GridWorld
    else:
        from envs.gridworld_clockless import GridWorldClockless as GridWorld

    env = GridWorld(display=args.render,
                    obstacles=[np.asarray([1, 2])],
                    goal_state=np.asarray([5, 5]),
                    step_wrapper=step_wrapper,
                    reset_wrapper=reset_wrapper,
                    seed=3)
    loss_t = LBT(list_size=100, stop_threshold=1.5, log_interval=100)
    model = ActorCritic(env,
                        gamma=0.99,
                        log_interval=200,
                        max_episodes=5000,
                        max_ep_length=20,
                        termination=loss_t)

    if args.policy_path is not None:
        model.policy.load(args.policy_path)

    if args.reward_net is not None:
        reward_net = RewardNet(env.reset().shape[0])
        reward_net.to('cuda')
        reward_net.load('./saved-models-rewards/0.pt')
        reward_net.eval()
    else:
        reward_net = None

    if not args.play:
        model.train_mp(n_jobs=4, reward_net=reward_net, irl=args.irl)

        if not args.dont_save:
            model.policy.save('./saved-models/')

    if args.play:
        env.tickSpeed = 15
        assert args.policy_path is not None, 'pass a policy to play from!'

        model.generate_trajectory(args.num_trajs, './trajs/ac_gridworld/')
def main():

    args = parser.parse_args()

    experiment_logger = Logger('temp_save.txt')

    experiment_logger.log_header('Arguments for the experiment :')
    experiment_logger.log_info(vars(args))

    mp.set_start_method('spawn')

    if args.render:
        from envs.gridworld import GridWorld
    else:
        from envs.gridworld_clockless import GridWorldClockless as GridWorld

    agent_width = 10
    step_size = 10
    obs_width = 10
    grid_size = 10

    if args.feat_extractor == 'Onehot':
        feat_ext = OneHot(grid_rows=10, grid_cols=10)
    if args.feat_extractor == 'SocialNav':
        feat_ext = SocialNav(fieldList=['agent_state', 'goal_state'])
    if args.feat_extractor == 'FrontBackSideSimple':
        feat_ext = FrontBackSideSimple(
            thresh1=1,
            thresh2=2,
            thresh3=3,
            thresh4=4,
            step_size=step_size,
            agent_width=agent_width,
            obs_width=obs_width,
        )

    if args.feat_extractor == 'LocalGlobal':
        feat_ext = LocalGlobal(
            window_size=3,
            grid_size=grid_size,
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
        )

    experiment_logger.log_header('Parameters of the feature extractor :')
    experiment_logger.log_info(feat_ext.__dict__)
    '''
    np.asarray([2,2]),np.asarray([7,4]),np.asarray([3,5]),
                                np.asarray([5,2]),np.asarray([8,3]),np.asarray([7,5]),
                                np.asarray([3,3]),np.asarray([3,7]),np.asarray([5,7])
                                '''
    env = GridWorld(display=args.render,
                    is_onehot=False,
                    is_random=True,
                    rows=100,
                    agent_width=agent_width,
                    step_size=step_size,
                    obs_width=obs_width,
                    width=grid_size,
                    cols=100,
                    seed=7,
                    buffer_from_obs=0,
                    obstacles=3,
                    goal_state=np.asarray([5, 5]))

    experiment_logger.log_header('Environment details :')
    experiment_logger.log_info(env.__dict__)

    model = ActorCritic(env,
                        feat_extractor=feat_ext,
                        gamma=0.99,
                        log_interval=100,
                        max_ep_length=40,
                        hidden_dims=args.policy_net_hidden_dims,
                        max_episodes=4000)

    experiment_logger.log_header('Details of the RL method :')
    experiment_logger.log_info(model.__dict__)

    pdb.set_trace()

    if args.policy_path is not None:
        model.policy.load(args.policy_path)

    if not args.play and not args.play_user:
        if args.reward_path is None:
            model.train_mp(n_jobs=4)
        else:
            from irlmethods.deep_maxent import RewardNet
            state_size = featExtract.extract_features(env.reset()).shape[0]
            reward_net = RewardNet(state_size)
            reward_net.load(args.reward_path)
            print(next(reward_net.parameters()).is_cuda)
            model.train_mp(reward_net=reward_net, n_jobs=4)

        if not args.dont_save:
            model.policy.save('./saved-models/')

    if args.play:
        env.tickSpeed = 15
        assert args.policy_path is not None, 'pass a policy to play from!'

        model.generate_trajectory(args.num_trajs,
                                  './trajs/ac_fbs_simple4_static_map7/')

    if args.play_user:
        env.tickSpeed = 200

        model.generate_trajectory_user(args.num_trajs,
                                       './trajs/ac_gridworld_user/')
Example #5
0
def main():

    #####for the logger
    ts = time.time()
    st = datetime.datetime.fromtimestamp(ts).strftime("%Y-%m-%d %H:%M:%S")
    ###################

    args = parser.parse_args()

    seed_all(args.seed)

    if args.on_server:

        matplotlib.use("Agg")
        # pygame without monitor
        os.environ["SDL_VIDEODRIVER"] = "dummy"

    from matplotlib import pyplot as plt

    mp.set_start_method("spawn")

    from rlmethods.b_actor_critic import ActorCritic
    from rlmethods.soft_ac import SoftActorCritic, QSoftActorCritic
    from rlmethods.rlutils import ReplayBuffer

    from envs.gridworld_drone import GridWorldDrone
    from featureExtractor.drone_feature_extractor import (
        DroneFeatureSAM1,
        DroneFeatureOccup,
        DroneFeatureRisk,
        DroneFeatureRisk_v2,
        VasquezF1,
        VasquezF2,
        VasquezF3,
        Fahad,
        GoalConditionedFahad,
    )
    from featureExtractor.gridworld_featureExtractor import (
        FrontBackSide,
        LocalGlobal,
        OneHot,
        SocialNav,
        FrontBackSideSimple,
    )
    from featureExtractor.drone_feature_extractor import (
        DroneFeatureRisk_speed,
        DroneFeatureRisk_speedv2,
    )

    from featureExtractor.drone_feature_extractor import VasquezF1

    save_folder = None

    if not args.dont_save and not args.play:

        if not args.save_folder:
            print("Provide save folder.")
            exit()

        policy_net_dims = "-policy_net-"
        for dim in args.policy_net_hidden_dims:
            policy_net_dims += str(dim)
            policy_net_dims += "-"

        reward_net_dims = "-reward_net-"
        for dim in args.reward_net_hidden_dims:
            reward_net_dims += str(dim)
            reward_net_dims += "-"

        save_folder = (
            "./results/"
            + args.save_folder
            + st
            + args.feat_extractor
            + "-seed-"
            + str(args.seed)
            + policy_net_dims
            + reward_net_dims
            + "-total-ep-"
            + str(args.total_episodes)
            + "-max-ep-len-"
            + str(args.max_ep_length)
        )

        experiment_logger = Logger(save_folder, "experiment_info.txt")
        experiment_logger.log_header("Arguments for the experiment :")
        repo = git.Repo(search_parent_directories=True)
        experiment_logger.log_info({'From branch : ' : repo.active_branch.name})
        experiment_logger.log_info({'Commit number : ' : repo.head.object.hexsha})
        experiment_logger.log_info(vars(args))

    window_size = 9
    step_size = 2
    agent_width = 10
    obs_width = 10
    grid_size = 10

    feat_ext = None
    # initialize the feature extractor to be used
    if args.feat_extractor == "Onehot":
        feat_ext = OneHot(grid_rows=10, grid_cols=10)
    if args.feat_extractor == "SocialNav":
        feat_ext = SocialNav(fieldList=["agent_state", "goal_state"])
    if args.feat_extractor == "FrontBackSideSimple":
        feat_ext = FrontBackSideSimple(
            thresh1=1,
            thresh2=2,
            thresh3=3,
            thresh4=4,
            step_size=step_size,
            agent_width=agent_width,
            obs_width=obs_width,
        )

    if args.feat_extractor == "LocalGlobal":
        feat_ext = LocalGlobal(
            window_size=11,
            grid_size=grid_size,
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
        )

    if args.feat_extractor == "DroneFeatureSAM1":

        feat_ext = DroneFeatureSAM1(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            thresh1=15,
            thresh2=30,
        )

    if args.feat_extractor == "DroneFeatureOccup":

        feat_ext = DroneFeatureOccup(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            window_size=window_size,
        )

    if args.feat_extractor == "DroneFeatureRisk":

        feat_ext = DroneFeatureRisk(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            show_agent_persp=False,
            thresh1=15,
            thresh2=30,
        )

    if args.feat_extractor == "DroneFeatureRisk_v2":

        feat_ext = DroneFeatureRisk_v2(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            show_agent_persp=False,
            thresh1=15,
            thresh2=30,
        )

    if args.feat_extractor == "DroneFeatureRisk_speed":

        feat_ext = DroneFeatureRisk_speed(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            show_agent_persp=False,
            return_tensor=False,
            thresh1=10,
            thresh2=15,
        )

    if args.feat_extractor == "DroneFeatureRisk_speedv2":

        feat_ext = DroneFeatureRisk_speedv2(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            show_agent_persp=False,
            return_tensor=False,
            thresh1=18,
            thresh2=30,
        )

    if args.feat_extractor == "VasquezF1":
        feat_ext = VasquezF1(agent_width * 6, 0.5, 1.0)

    if args.feat_extractor == "VasquezF2":
        feat_ext = VasquezF1(agent_width * 6, 0.5, 1.0)

    if args.feat_extractor == "VasquezF3":
        feat_ext = VasquezF3(agent_width)

    if args.feat_extractor == "Fahad":
        feat_ext = Fahad(36, 60, 0.5, 1.0)

    if args.feat_extractor == "GoalConditionedFahad":
        feat_ext = GoalConditionedFahad(36, 60, 0.5, 1.0)

    if feat_ext is None:
        print("Please enter proper feature extractor!")
        exit()
    # log feature extractor info

    if not args.dont_save and not args.play:

        experiment_logger.log_header("Parameters of the feature extractor :")
        experiment_logger.log_info(feat_ext.__dict__)

    # initialize the environment
    if args.replace_subject:
        replace_subject = True
    else:
        replace_subject = False

    env = GridWorldDrone(
        display=args.render,
        is_onehot=False,
        seed=args.seed,
        obstacles=None,
        show_trail=False,
        is_random=True,
        annotation_file=args.annotation_file,
        subject=args.subject,
        tick_speed=60,
        obs_width=10,
        step_size=step_size,
        agent_width=agent_width,
        replace_subject=replace_subject,
        segment_size=args.segment_size,
        external_control=True,
        step_reward=0.001,
        show_comparison=True,
        consider_heading=True,
        show_orientation=True,
        # rows=200, cols=200, width=grid_size)
        rows=576,
        cols=720,
        width=grid_size,
    )

    # env = gym.make('Acrobot-v1')
    # log environment info
    if not args.dont_save and not args.play:

        experiment_logger.log_header("Environment details :")
        experiment_logger.log_info(env.__dict__)

    # initialize RL

    if args.rl_method == "ActorCritic":
        model = ActorCritic(
            env,
            feat_extractor=feat_ext,
            gamma=1,
            log_interval=100,
            max_episode_length=args.max_ep_length,
            hidden_dims=args.policy_net_hidden_dims,
            save_folder=save_folder,
            lr=args.lr,
            entropy_coeff=args.entropy_coeff,
            max_episodes=args.total_episodes,
        )

    if args.rl_method == "SAC":

        replay_buffer = ReplayBuffer(args.replay_buffer_size)

        model = SoftActorCritic(
            env,
            replay_buffer,
            feat_ext,
            buffer_sample_size=args.replay_buffer_sample_size,
            entropy_tuning=True,
            play_interval=args.play_interval,
            entropy_target=args.entropy_target,
            gamma=args.gamma,
            learning_rate=args.lr,
        )

    if args.rl_method == "discrete_QSAC":

        replay_buffer = ReplayBuffer(args.replay_buffer_size)

        model = QSoftActorCritic(
            env,
            replay_buffer,
            feat_ext,
            buffer_sample_size=args.replay_buffer_sample_size,
            entropy_tuning=True,
            play_interval=args.play_interval,
            entropy_target=args.entropy_target,
            gamma=args.gamma,
            learning_rate=args.lr,
        )
    # log RL info
    if not args.dont_save and not args.play:

        experiment_logger.log_header("Details of the RL method :")
        experiment_logger.log_info(model.__dict__)

    if args.policy_path is not None:

        from debugtools import numericalSort

        policy_file_list = []
        reward_across_models = []
        # print(args.policy_path)
        if os.path.isfile(args.policy_path):
            policy_file_list.append(args.policy_path)
        if os.path.isdir(args.policy_path):
            policy_names = glob.glob(os.path.join(args.policy_path, "*.pt"))
            policy_file_list = sorted(policy_names, key=numericalSort)

        xaxis = np.arange(len(policy_file_list))

    if not args.play and not args.play_user:
        # no playing of any kind, so training

        if args.reward_path is None:

            if args.policy_path:
                model.policy.load(args.policy_path)

            if args.rl_method == "SAC" or args.rl_method == "discrete_QSAC":
                model.train(args.total_episodes, args.max_ep_length)

            else:
                model.train()

        else:
            from irlmethods.deep_maxent import RewardNet

            state_size = feat_ext.extract_features(env.reset()).shape[0]
            reward_net = RewardNet(state_size, args.reward_net_hidden_dims)
            reward_net.load(args.reward_path)
            print(next(reward_net.parameters()).is_cuda)
            model.train(reward_net=reward_net)

        if not args.dont_save:
            model.policy.save(save_folder + "/policy-models/")

    if args.play:
        # env.tickSpeed = 15
        from debugtools import compile_results

        xaxis = []
        counter = 1
        plt.figure(0)
        avg_reward_list = []
        frac_good_run_list = []
        print(policy_file_list)
        for policy_file in policy_file_list:

            print("Playing for policy :", policy_file)
            model.policy.load(policy_file)
            policy_folder = policy_file.strip().split("/")[0:-2]
            save_folder = ""
            for p in policy_folder:
                save_folder = save_folder + p + "/"

            print("The final save folder ", save_folder)
            # env.tickSpeed = 10
            assert args.policy_path is not None, "pass a policy to play from!"
            if args.exp_trajectory_path is not None:
                from irlmethods.irlUtils import calculate_expert_svf

                expert_svf = calculate_expert_svf(
                    args.exp_trajectory_path,
                    max_time_steps=args.max_ep_length,
                    feature_extractor=feat_ext,
                    gamma=1,
                )
            # reward_across_models.append(model.generate_trajectory(args.num_trajs, args.render))
            if args.exp_trajectory_path is None:

                if args.dont_save:
                    rewards, state_info, sub_info = model.generate_trajectory(
                        args.num_trajs, args.render
                    )
                else:
                    rewards, state_info, sub_info = model.generate_trajectory(
                        args.num_trajs,
                        args.render,
                        store_raw=args.store_raw_states,
                        path=save_folder + "/agent_generated_trajectories/",
                    )
            else:

                if args.dont_save:
                    rewards, state_info, sub_info = model.generate_trajectory(
                        args.num_trajs, args.render, expert_svf=expert_svf
                    )
                else:
                    rewards, state_info, sub_info = model.generate_trajectory(
                        args.num_trajs,
                        args.render,
                        path=save_folder + "/agent_generated_trajectories/",
                        expert_svf=expert_svf,
                    )

            avg_reward, good_run_frac = compile_results(
                rewards, state_info, sub_info
            )

            avg_reward_list.append(avg_reward)
            frac_good_run_list.append(good_run_frac)
            plt.plot(avg_reward_list, c="r")
            plt.plot(frac_good_run_list, c="g")
            plt.draw()
        plt.show()

    if args.play_user:
        env.tickSpeed = 200

        model.generate_trajectory_user(
            args.num_trajs, args.render, path="./user_generated_trajectories/"
        )
Example #6
0
def main():

    args = parser.parse_args()

    utils.seed_all(args.seed)

    if args.on_server:
        # matplotlib without monitor
        matplotlib.use('Agg')

        # pygame without monitor
        os.environ['SDL_VIDEODRIVER'] = 'dummy'
    from matplotlib import pyplot as plt

    save_folder = None
    if not args.dont_save:
        save_folder = './results/'+ args.save_folder
        experiment_logger = Logger(save_folder,'experiment_info.txt')

        experiment_logger.log_header('Arguments for the experiment :')
        experiment_logger.log_info(vars(args))
    

    mp.set_start_method('spawn')

    if args.render:
        from envs.gridworld import GridWorld
    else:
        from envs.gridworld_clockless import GridWorldClockless as GridWorld
        

    if args.feat_extractor=='MCFeatures':
        feat_ext = MCFeatures(args.state_discretization[0], args.state_discretization[1]) 

    elif args.feat_extractor=='MCFeaturesOnehot':
        feat_ext = MCFeaturesOnehot(args.state_discretization[0], args.state_discretization[1])

    else:
        print('Enter proper feature extractor value.')
        exit()

    if not args.dont_save:
        experiment_logger.log_header('Parameters of the feature extractor :')
        experiment_logger.log_info(feat_ext.__dict__)

    '''
    np.asarray([2,2]),np.asarray([7,4]),np.asarray([3,5]),
                                np.asarray([5,2]),np.asarray([8,3]),np.asarray([7,5]),
                                np.asarray([3,3]),np.asarray([3,7]),np.asarray([5,7])
                                
    env = GridWorld(display=args.render, is_onehot= False,is_random=True,
                    rows=100, agent_width=agent_width,step_size=step_size,
                    obs_width=obs_width,width=grid_size,
                    cols=100,
                    seed=7,
                    buffer_from_obs=0,
                    obstacles=3,
                                
                    goal_state=np.asarray([5,5]))
    '''
    env = gym.make('MountainCar-v0')
    env = env.unwrapped

    if not args.dont_save:

        experiment_logger.log_header('Environment details :')
        experiment_logger.log_info(env.__dict__)


    model = ActorCritic(env, feat_extractor=feat_ext,  gamma=0.99, plot_loss=False,
                        log_interval=10, max_ep_length=300, hidden_dims=args.policy_net_hidden_dims,
                        max_episodes=30, save_folder=save_folder)

    if not args.dont_save:

        experiment_logger.log_header('Details of the RL method :')
        experiment_logger.log_info(model.__dict__)
    
    #pdb.set_trace()

    if args.policy_path is not None:
        policy_file_list =  []
        reward_across_models = []
        if os.path.isfile(args.policy_path):
            policy_file_list.append(args.policy_path)
        if os.path.isdir(args.policy_path):
            policy_names = glob.glob(os.path.join(args.policy_path, '*.pt'))
            policy_file_list = sorted(policy_names, key=numericalSort)
        
        xaxis = np.arange(len(policy_file_list))

    if not args.play and not args.play_user:
        if args.reward_path is None:
            model.train_mp(n_jobs=4)
        else:

            from irlmethods.deep_maxent import RewardNet
            state_size = feat_ext.state_rep_size
            reward_net = RewardNet(state_size, args.policy_net_hidden_dims)
            reward_net.load(args.reward_path)
            print(next(reward_net.parameters()).is_cuda)
            model.train_mp(reward_net = reward_net,n_jobs = 4)

        if not args.dont_save:  
            model.policy.save(save_folder+'/policy/')

    if args.play:
        xaxis = []
        counter = 1
        print(policy_file_list)
        for policy_file in policy_file_list:

            model.policy.load(policy_file)

            env.tickSpeed = 15
            assert args.policy_path is not None, 'pass a policy to play from!'

            reward_across_models.append(model.generate_trajectory(args.num_trajs, args.render))

        #plotting the 2d list

            xaxis.append(counter)
            counter += 1
            reward_across_models_np = np.array(reward_across_models)
            mean_rewards = np.mean(reward_across_models_np, axis=1)
            std_rewards = np.std(reward_across_models_np, axis=1)
            plt.plot(xaxis,mean_rewards,color = 'r',label='IRL trained agent')
            plt.fill_between(xaxis , mean_rewards-std_rewards , 
                        mean_rewards+std_rewards, alpha = 0.5, facecolor = 'r')
            plt.draw()
            plt.pause(0.001)
            '''
            print('RAM usage :')
            display_memory_usage(process.memory_info().rss)
            print('GPU usage :')
            display_memory_usage(torch.cuda.memory_allocated())
            torch.cuda.empty_cache()
            display_memory_usage(torch.cuda.memory_allocated())
            '''
            #plt.show()
        plt.show()
    if args.play_user:
        env.tickSpeed = 200

        model.generate_trajectory_user(args.num_trajs, './trajs/ac_gridworld_user/')
Example #7
0
def main():

    args = parser.parse_args()
    mp.set_start_method('spawn')

    from envs.gridworld_drone import GridWorldDrone

    agent_width = 10
    step_size = 2
    obs_width = 10
    grid_size = 10

    if args.feat_extractor == 'Onehot':
        feat_ext = OneHot(grid_rows=10, grid_cols=10)
    if args.feat_extractor == 'SocialNav':
        feat_ext = SocialNav(fieldList=['agent_state', 'goal_state'])
    if args.feat_extractor == 'FrontBackSideSimple':
        feat_ext = FrontBackSideSimple(
            thresh1=1,
            thresh2=2,
            thresh3=3,
            thresh4=4,
            step_size=step_size,
            agent_width=agent_width,
            obs_width=obs_width,
            fieldList=['agent_state', 'goal_state', 'obstacles'])

    if args.feat_extractor == 'LocalGlobal':
        feat_ext = LocalGlobal(
            window_size=3,
            grid_size=grid_size,
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            fieldList=['agent_state', 'goal_state', 'obstacles'])

    #featExtract = OneHot(grid_rows=10,grid_cols=10)
    #featExtract = FrontBackSideSimple(thresh1 = 1,fieldList =  ['agent_state','goal_state','obstacles'])

    #featExtract = SocialNav(fieldList = ['agent_state','goal_state'])
    '''
    np.asarray([2,2]),np.asarray([7,4]),np.asarray([3,5]),
                                np.asarray([5,2]),np.asarray([8,3]),np.asarray([7,5]),
                                np.asarray([3,3]),np.asarray([3,7]),np.asarray([5,7])
                               
    env = GridWorld(display=args.render, is_onehot= False,is_random=True,
                    rows=10, agent_width=agent_width,step_size=step_size,
                    obs_width=obs_width,width=grid_size,
                    cols=10,
                    seed = 7,
                    obstacles = '../envs/map3.jpg',
                                
                    goal_state = np.asarray([5,5]))
    '''

    env = GridWorldDrone(display=args.render,
                         is_onehot=False,
                         seed=999,
                         obstacles=None,
                         show_trail=False,
                         is_random=False,
                         annotation_file=args.annotation_file,
                         subject=None,
                         tick_speed=90,
                         obs_width=10,
                         step_size=step_size,
                         agent_width=agent_width,
                         show_comparison=True,
                         rows=576,
                         cols=720,
                         width=grid_size)

    model = ActorCritic(env,
                        feat_extractor=featExtract,
                        gamma=0.99,
                        log_interval=50,
                        max_ep_length=500,
                        max_episodes=2000)

    if args.policy_path is not None:
        model.policy.load(args.policy_path)

    if not args.play and not args.play_user:
        if args.reward_path is None:
            model.train_mp(n_jobs=4)
        else:
            from irlmethods.deep_maxent import RewardNet
            state_size = featExtract.extract_features(env.reset()).shape[0]
            reward_net = RewardNet(state_size)
            reward_net.load(args.reward_path)
            print(next(reward_net.parameters()).is_cuda)
            model.train_mp(reward_net=reward_net, n_jobs=4)

        if not args.dont_save:
            model.policy.save('./saved-models/')

    if args.play:
        #env.tickSpeed = 15
        assert args.policy_path is not None, 'pass a policy to play from!'

        model.generate_trajectory(
            args.num_trajs, './trajs/ac_loc_glob_rectified_win_3_static_map3/')

    if args.play_user:
        env.tickSpeed = 200

        model.generate_trajectory_user(args.num_trajs,
                                       './trajs/ac_gridworld_user/')