Example #1
0
    def main_loop(self):
        evaluator = Evaluator(stats=False)
        # Set game to online model.
        env, args = load_env(os.environ,
                             evaluator=evaluator,
                             overrides=dict(
                                 num_games=1,
                                 batchsize=1,
                                 num_games_per_thread=1,
                                 greedy=True,
                                 T=1,
                                 additional_labels="aug_code,move_idx"))

        GC = env["game"].initialize()
        model = env["model_loaders"][0].load_model(GC.params)
        mi = ModelInterface()
        mi.add_model("model", model)
        mi.add_model("actor",
                     model,
                     copy=True,
                     cuda=args.gpu is not None,
                     gpu_id=args.gpu)
        mi["model"].eval()
        mi["actor"].eval()

        self.evaluator = evaluator
        self.last_move_idx = None

        def human_actor(batch):
            print("In human_actor")
            return self.prompt("DF> ", batch)

        def actor(batch):
            return self.actor(batch)

        def train(batch):
            self.prompt("DF Train> ", batch)

        evaluator.setup(sampler=env["sampler"], mi=mi)

        GC.reg_callback_if_exists("actor", actor)
        GC.reg_callback_if_exists("human_actor", human_actor)
        GC.reg_callback_if_exists("train", train)

        GC.Start()

        evaluator.episode_start(0)

        while True:
            GC.Run()
            if self.exit: break
        GC.Stop()
Example #2
0
    def main_loop(self):
        evaluator = Evaluator(stats=False)
        # Set game to online model.
        env, args = load_env(os.environ, evaluator=evaluator, overrides=dict(num_games=1, batchsize=1, num_games_per_thread=1, greedy=True, T=1, additional_labels="aug_code,move_idx"))

        GC = env["game"].initialize()
        model = env["model_loaders"][0].load_model(GC.params)
        mi = ModelInterface()
        mi.add_model("model", model)
        mi.add_model("actor", model, copy=True, cuda=args.gpu is not None, gpu_id=args.gpu)
        mi["model"].eval()
        mi["actor"].eval()

        self.evaluator = evaluator
        self.last_move_idx = None

        def human_actor(batch):
            print("In human_actor")
            return self.prompt("DF> ", batch)

        def actor(batch):
            return self.actor(batch)

        def train(batch):
            self.prompt("DF Train> ", batch)

        evaluator.setup(sampler=env["sampler"], mi=mi)

        GC.reg_callback_if_exists("actor", actor)
        GC.reg_callback_if_exists("human_actor", human_actor)
        GC.reg_callback_if_exists("train", train)

        GC.Start()

        evaluator.episode_start(0)

        while True:
            GC.Run()
            if self.exit: break
        GC.Stop()
Example #3
0
    model = env["model_loaders"][0].load_model(GC.params)
    env["mi"].add_model("actor",
                        model,
                        cuda=not args.gpu is None,
                        gpu_id=args.gpu)
    env["mi"]["actor"].eval()

    def actor(batch):
        reply = evaluator.actor(batch)
        '''
        s = batch["s"][0][0]
        seq = batch["seq"][0][0]
        for i in range(s.size(0)):
            print("[seq=%d][c=%d]: %s" % (seq, i, str(s[i])))
        print("[seq=%d]: %s" % (seq, str(reply["pi"][0])))
        print("[seq=%d]: %s" % (seq, str(reply["a"][0])))
        '''
        eval_iters.stats.feed_batch(batch)
        return reply

    evaluator.setup(sampler=env["sampler"], mi=env["mi"])

    GC.reg_callback("actor", actor)
    GC.Start()

    evaluator.episode_start(0)

    for n in eval_iters.iters():
        GC.Run()
    GC.Stop()
Example #4
0
    evaluator.setup(mi=mi)

    total_batchsize = 0
    total_sel_batchsize = 0

    def actor(batch):
        global total_batchsize, total_sel_batchsize
        reply = evaluator.actor(batch)
        total_sel_batchsize += batch.batchsize
        total_batchsize += batch.max_batchsize

        if total_sel_batchsize >= 5000:
            print("Batch usage: %d/%d (%.2f%%)" %
                  (total_sel_batchsize, total_batchsize, 100.0 * total_sel_batchsize / total_batchsize))
            total_sel_batchsize = 0
            total_batchsize = 0
        # import pdb
        # pdb.set_trace()
        return reply

    GC.reg_callback_if_exists("actor", actor)

    GC.Start()

    evaluator.episode_start(0)

    while True:
        GC.Run()

    GC.Stop()