def transitionState(label, *args, **kwargs): """Load a transition state from an input file""" global transition_state_dict if label in transition_state_dict: raise ValueError( 'Multiple occurrences of transition state with label {0!r}.'. format(label)) logging.info('Loading transition state {0}...'.format(label)) ts = TransitionState(label=label) transition_state_dict[label] = ts if len(args) == 1 and len(kwargs) == 0: # The argument is a path to a conformer input file path = args[0] job = StatMechJob(species=ts, path=path) job_list.append(job) elif len(args) == 0: # The species parameters are given explicitly E0 = None modes = [] spin_multiplicity = 1 optical_isomers = 1 frequency = None for key, value in kwargs.items(): if key == 'E0': E0 = value elif key == 'modes': modes = value elif key == 'spinMultiplicity': spin_multiplicity = value elif key == 'opticalIsomers': optical_isomers = value elif key == 'frequency': frequency = value else: raise TypeError( 'transition_state() got an unexpected keyword argument {0!r}.' .format(key)) ts.conformer = Conformer(E0=E0, modes=modes, spin_multiplicity=spin_multiplicity, optical_isomers=optical_isomers) ts.frequency = frequency else: if len(args) == 0 and len(kwargs) == 0: raise InputError( 'The transition_state needs to reference a quantum job file or contain kinetic information.' ) raise InputError( 'The transition_state can only link a quantum job or directly input information, not both.' ) return ts
def transitionState(label, *args, **kwargs): global transitionStateDict if label in transitionStateDict: raise ValueError( 'Multiple occurrences of transition state with label {0!r}.'. format(label)) logging.info('Loading transition state {0}...'.format(label)) ts = TransitionState(label=label) transitionStateDict[label] = ts if len(args) == 1 and len(kwargs) == 0: # The argument is a path to a conformer input file path = args[0] job = StatMechJob(species=ts, path=path) jobList.append(job) elif len(args) == 0 and len(kwargs) > 0: # The species parameters are given explicitly E0 = None modes = [] spinMultiplicity = 1 opticalIsomers = 1 frequency = None for key, value in kwargs.items(): if key == 'E0': E0 = value elif key == 'modes': modes = value elif key == 'spinMultiplicity': spinMultiplicity = value elif key == 'opticalIsomers': opticalIsomers = value elif key == 'frequency': frequency = value else: raise TypeError( 'transitionState() got an unexpected keyword argument {0!r}.' .format(key)) ts.conformer = Conformer(E0=E0, modes=modes, spinMultiplicity=spinMultiplicity, opticalIsomers=opticalIsomers) ts.frequency = frequency return ts
def test_give_tlist_for_kineticsjob(self): """ Ensures that the proper temperature ranges are set when Tlist is specified """ rxn = Reaction(transition_state=TransitionState()) t_list = [50.7, 100, 300, 800, 1255] kjob = KineticsJob(rxn, Tlist=(t_list, 'K')) self.assertEqual(min(t_list), kjob.Tmin.value_si) self.assertEqual(max(t_list), kjob.Tmax.value_si) self.assertEqual(len(t_list), kjob.Tcount)
def transitionState(label, *args, **kwargs): global transitionStateDict if label in transitionStateDict: raise ValueError('Multiple occurrences of transition state with label {0!r}.'.format(label)) logging.info('Loading transition state {0}...'.format(label)) ts = TransitionState(label=label) transitionStateDict[label] = ts if len(args) == 1 and len(kwargs) == 0: # The argument is a path to a conformer input file path = args[0] job = StatMechJob(species=ts, path=path) jobList.append(job) elif len(args) == 0: # The species parameters are given explicitly E0 = None modes = [] spinMultiplicity = 1 opticalIsomers = 1 frequency = None for key, value in kwargs.items(): if key == 'E0': E0 = value elif key == 'modes': modes = value elif key == 'spinMultiplicity': spinMultiplicity = value elif key == 'opticalIsomers': opticalIsomers = value elif key == 'frequency': frequency = value else: raise TypeError('transitionState() got an unexpected keyword argument {0!r}.'.format(key)) ts.conformer = Conformer(E0=E0, modes=modes, spinMultiplicity=spinMultiplicity, opticalIsomers=opticalIsomers) ts.frequency = frequency else: if len(args) == 0 and len(kwargs) == 0: raise InputError('The transitionState needs to reference a quantum job file or contain kinetic information.') raise InputError('The transitionState can only link a quantum job or directly input information, not both.') return ts
def test_give_temperature_range_for_kineticsjob(self): """ Ensures that Tlist is set when a range of temperatures is specified """ rxn = Reaction(transition_state=TransitionState()) kjob = KineticsJob(rxn, Tmin=(50, 'K'), Tmax=(4000, 'K'), Tcount=5) self.assertEqual(5, len(kjob.Tlist.value_si)) self.assertEqual(50, min(kjob.Tlist.value_si)) self.assertAlmostEqual(4000, max(kjob.Tlist.value_si)) inverse_tlist = 1 / kjob.Tlist.value_si self.assertAlmostEqual(inverse_tlist[1] - inverse_tlist[0], inverse_tlist[-1] - inverse_tlist[-2], msg='The points for fitting do not appear 1/T spaced. ' 'Obtained values of {0} and {1}'.format(inverse_tlist[1] - inverse_tlist[0], inverse_tlist[-1] - inverse_tlist[-2]))
def test_get_tlist_for_kineticsjob(self): """ Ensures that Tlist is set when no range is specified """ rxn = Reaction(transition_state=TransitionState()) kjob = KineticsJob(rxn) self.assertAlmostEqual(298, kjob.Tmin.value_si) self.assertAlmostEqual(2500, kjob.Tmax.value_si) self.assertEqual(50, kjob.Tcount) self.assertEqual(50, len(kjob.Tlist.value_si)) self.assertAlmostEqual(298, min(kjob.Tlist.value_si)) self.assertAlmostEqual(2500, max(kjob.Tlist.value_si)) inverse_tlist = 1 / kjob.Tlist.value_si self.assertAlmostEqual(inverse_tlist[1] - inverse_tlist[0], inverse_tlist[-1] - inverse_tlist[-2], msg='The points for fitting do not appear 1/T spaced. ' 'Obtained values of {0} and {1}'.format(inverse_tlist[1] - inverse_tlist[0], inverse_tlist[-1] - inverse_tlist[-2]))
def loadFAMEInput(path, moleculeDict=None): """ Load the contents of a FAME input file into the MEASURE object. FAME is an early version of MEASURE written in Fortran and used by RMG-Java. This script enables importing FAME input files into MEASURE so we can use the additional functionality that MEASURE provides. Note that it is mostly designed to load the FAME input files generated automatically by RMG-Java, and may not load hand-crafted FAME input files. If you specify a `moleculeDict`, then this script will use it to associate the species with their structures. """ def readMeaningfulLine(f): line = f.readline() while line != '': line = line.strip() if len(line) > 0 and line[0] != '#': return line else: line = f.readline() return '' moleculeDict = moleculeDict or {} logging.info('Loading file "{0}"...'.format(path)) f = open(path) job = PressureDependenceJob(network=None) # Read method method = readMeaningfulLine(f).lower() if method == 'modifiedstrongcollision': job.method = 'modified strong collision' elif method == 'reservoirstate': job.method = 'reservoir state' # Read temperatures Tcount, Tunits, Tmin, Tmax = readMeaningfulLine(f).split() job.Tmin = Quantity(float(Tmin), Tunits) job.Tmax = Quantity(float(Tmax), Tunits) job.Tcount = int(Tcount) Tlist = [] for i in range(int(Tcount)): Tlist.append(float(readMeaningfulLine(f))) job.Tlist = Quantity(Tlist, Tunits) # Read pressures Pcount, Punits, Pmin, Pmax = readMeaningfulLine(f).split() job.Pmin = Quantity(float(Pmin), Punits) job.Pmax = Quantity(float(Pmax), Punits) job.Pcount = int(Pcount) Plist = [] for i in range(int(Pcount)): Plist.append(float(readMeaningfulLine(f))) job.Plist = Quantity(Plist, Punits) # Read interpolation model model = readMeaningfulLine(f).split() if model[0].lower() == 'chebyshev': job.interpolationModel = ('chebyshev', int(model[1]), int(model[2])) elif model[0].lower() == 'pdeparrhenius': job.interpolationModel = ('pdeparrhenius',) # Read grain size or number of grains job.minimumGrainCount = 0 job.maximumGrainSize = None for i in range(2): data = readMeaningfulLine(f).split() if data[0].lower() == 'numgrains': job.minimumGrainCount = int(data[1]) elif data[0].lower() == 'grainsize': job.maximumGrainSize = (float(data[2]), data[1]) # A FAME file is almost certainly created during an RMG job, so use RMG mode job.rmgmode = True # Create the Network job.network = Network() # Read collision model data = readMeaningfulLine(f) assert data.lower() == 'singleexpdown' alpha0units, alpha0 = readMeaningfulLine(f).split() T0units, T0 = readMeaningfulLine(f).split() n = readMeaningfulLine(f) energyTransferModel = SingleExponentialDown( alpha0 = Quantity(float(alpha0), alpha0units), T0 = Quantity(float(T0), T0units), n = float(n), ) speciesDict = {} # Read bath gas parameters bathGas = Species(label='bath_gas', energyTransferModel=energyTransferModel) molWtunits, molWt = readMeaningfulLine(f).split() if molWtunits == 'u': molWtunits = 'amu' bathGas.molecularWeight = Quantity(float(molWt), molWtunits) sigmaLJunits, sigmaLJ = readMeaningfulLine(f).split() epsilonLJunits, epsilonLJ = readMeaningfulLine(f).split() assert epsilonLJunits == 'J' bathGas.transportData = TransportData( sigma = Quantity(float(sigmaLJ), sigmaLJunits), epsilon = Quantity(float(epsilonLJ) / constants.kB, 'K'), ) job.network.bathGas = {bathGas: 1.0} # Read species data Nspec = int(readMeaningfulLine(f)) for i in range(Nspec): species = Species() species.conformer = Conformer() species.energyTransferModel = energyTransferModel # Read species label species.label = readMeaningfulLine(f) speciesDict[species.label] = species if species.label in moleculeDict: species.molecule = [moleculeDict[species.label]] # Read species E0 E0units, E0 = readMeaningfulLine(f).split() species.conformer.E0 = Quantity(float(E0), E0units) species.conformer.E0.units = 'kJ/mol' # Read species thermo data H298units, H298 = readMeaningfulLine(f).split() S298units, S298 = readMeaningfulLine(f).split() Cpcount, Cpunits = readMeaningfulLine(f).split() Cpdata = [] for i in range(int(Cpcount)): Cpdata.append(float(readMeaningfulLine(f))) if S298units == 'J/mol*K': S298units = 'J/(mol*K)' if Cpunits == 'J/mol*K': Cpunits = 'J/(mol*K)' species.thermo = ThermoData( H298 = Quantity(float(H298), H298units), S298 = Quantity(float(S298), S298units), Tdata = Quantity([300,400,500,600,800,1000,1500], "K"), Cpdata = Quantity(Cpdata, Cpunits), Cp0 = (Cpdata[0], Cpunits), CpInf = (Cpdata[-1], Cpunits), ) # Read species collision parameters molWtunits, molWt = readMeaningfulLine(f).split() if molWtunits == 'u': molWtunits = 'amu' species.molecularWeight = Quantity(float(molWt), molWtunits) sigmaLJunits, sigmaLJ = readMeaningfulLine(f).split() epsilonLJunits, epsilonLJ = readMeaningfulLine(f).split() assert epsilonLJunits == 'J' species.transportData = TransportData( sigma = Quantity(float(sigmaLJ), sigmaLJunits), epsilon = Quantity(float(epsilonLJ) / constants.kB, 'K'), ) # Read species vibrational frequencies freqCount, freqUnits = readMeaningfulLine(f).split() frequencies = [] for j in range(int(freqCount)): frequencies.append(float(readMeaningfulLine(f))) species.conformer.modes.append(HarmonicOscillator( frequencies = Quantity(frequencies, freqUnits), )) # Read species external rotors rotCount, rotUnits = readMeaningfulLine(f).split() if int(rotCount) > 0: raise NotImplementedError('Cannot handle external rotational modes in FAME input.') # Read species internal rotors freqCount, freqUnits = readMeaningfulLine(f).split() frequencies = [] for j in range(int(freqCount)): frequencies.append(float(readMeaningfulLine(f))) barrCount, barrUnits = readMeaningfulLine(f).split() barriers = [] for j in range(int(barrCount)): barriers.append(float(readMeaningfulLine(f))) if barrUnits == 'cm^-1': barrUnits = 'J/mol' barriers = [barr * constants.h * constants.c * constants.Na * 100. for barr in barriers] elif barrUnits in ['Hz', 's^-1']: barrUnits = 'J/mol' barriers = [barr * constants.h * constants.Na for barr in barriers] elif barrUnits != 'J/mol': raise Exception('Unexpected units "{0}" for hindered rotor barrier height.'.format(barrUnits)) inertia = [V0 / 2.0 / (nu * constants.c * 100.)**2 / constants.Na for nu, V0 in zip(frequencies, barriers)] for I, V0 in zip(inertia, barriers): species.conformer.modes.append(HinderedRotor( inertia = Quantity(I,"kg*m^2"), barrier = Quantity(V0,barrUnits), symmetry = 1, semiclassical = False, )) # Read overall symmetry number species.conformer.spinMultiplicity = int(readMeaningfulLine(f)) # Read isomer, reactant channel, and product channel data Nisom = int(readMeaningfulLine(f)) Nreac = int(readMeaningfulLine(f)) Nprod = int(readMeaningfulLine(f)) for i in range(Nisom): data = readMeaningfulLine(f).split() assert data[0] == '1' job.network.isomers.append(speciesDict[data[1]]) for i in range(Nreac): data = readMeaningfulLine(f).split() assert data[0] == '2' job.network.reactants.append([speciesDict[data[1]], speciesDict[data[2]]]) for i in range(Nprod): data = readMeaningfulLine(f).split() if data[0] == '1': job.network.products.append([speciesDict[data[1]]]) elif data[0] == '2': job.network.products.append([speciesDict[data[1]], speciesDict[data[2]]]) # Read path reactions Nrxn = int(readMeaningfulLine(f)) for i in range(Nrxn): # Read and ignore reaction equation equation = readMeaningfulLine(f) reaction = Reaction(transitionState=TransitionState(), reversible=True) job.network.pathReactions.append(reaction) reaction.transitionState.conformer = Conformer() # Read reactant and product indices data = readMeaningfulLine(f).split() reac = int(data[0]) - 1 prod = int(data[1]) - 1 if reac < Nisom: reaction.reactants = [job.network.isomers[reac]] elif reac < Nisom+Nreac: reaction.reactants = job.network.reactants[reac-Nisom] else: reaction.reactants = job.network.products[reac-Nisom-Nreac] if prod < Nisom: reaction.products = [job.network.isomers[prod]] elif prod < Nisom+Nreac: reaction.products = job.network.reactants[prod-Nisom] else: reaction.products = job.network.products[prod-Nisom-Nreac] # Read reaction E0 E0units, E0 = readMeaningfulLine(f).split() reaction.transitionState.conformer.E0 = Quantity(float(E0), E0units) reaction.transitionState.conformer.E0.units = 'kJ/mol' # Read high-pressure limit kinetics data = readMeaningfulLine(f) assert data.lower() == 'arrhenius' Aunits, A = readMeaningfulLine(f).split() if '/' in Aunits: index = Aunits.find('/') Aunits = '{0}/({1})'.format(Aunits[0:index], Aunits[index+1:]) Eaunits, Ea = readMeaningfulLine(f).split() n = readMeaningfulLine(f) reaction.kinetics = Arrhenius( A = Quantity(float(A), Aunits), Ea = Quantity(float(Ea), Eaunits), n = Quantity(float(n)), ) reaction.kinetics.Ea.units = 'kJ/mol' f.close() job.network.isomers = [Configuration(isomer) for isomer in job.network.isomers] job.network.reactants = [Configuration(*reactants) for reactants in job.network.reactants] job.network.products = [Configuration(*products) for products in job.network.products] return job
def setUp(self): """ A function run before each unit test in this class. """ self.nC4H10O = Species( label='n-C4H10O', conformer=Conformer( E0=(-317.807, 'kJ/mol'), modes=[ IdealGasTranslation(mass=(74.07, "g/mol")), NonlinearRotor(inertia=([41.5091, 215.751, 233.258], "amu*angstrom^2"), symmetry=1), HarmonicOscillator(frequencies=([ 240.915, 341.933, 500.066, 728.41, 809.987, 833.93, 926.308, 948.571, 1009.3, 1031.46, 1076, 1118.4, 1184.66, 1251.36, 1314.36, 1321.42, 1381.17, 1396.5, 1400.54, 1448.08, 1480.18, 1485.34, 1492.24, 1494.99, 1586.16, 2949.01, 2963.03, 2986.19, 2988.1, 2995.27, 3026.03, 3049.05, 3053.47, 3054.83, 3778.88 ], "cm^-1")), HinderedRotor(inertia=(0.854054, "amu*angstrom^2"), symmetry=1, fourier=([[ 0.25183, -1.37378, -2.8379, 0.0305112, 0.0028088 ], [ 0.458307, 0.542121, -0.599366, -0.00283925, 0.0398529 ]], "kJ/mol")), HinderedRotor( inertia=(8.79408, "amu*angstrom^2"), symmetry=1, fourier=([[ 0.26871, -0.59533, -8.15002, -0.294325, -0.145357 ], [1.1884, 0.99479, -0.940416, -0.186538, 0.0309834]], "kJ/mol")), HinderedRotor(inertia=(7.88153, "amu*angstrom^2"), symmetry=1, fourier=([[ -4.67373, 2.03735, -6.25993, -0.27325, -0.048748 ], [ -0.982845, 1.76637, -1.57619, 0.474364, -0.000681718 ]], "kJ/mol")), HinderedRotor(inertia=(2.81525, "amu*angstrom^2"), symmetry=3, barrier=(2.96807, "kcal/mol")), ], spin_multiplicity=1, optical_isomers=1, ), molecular_weight=(74.07, "g/mol"), transport_data=TransportData(sigma=(5.94, 'angstrom'), epsilon=(559, 'K')), energy_transfer_model=SingleExponentialDown( alpha0=(447.5 * 0.011962, "kJ/mol"), T0=(300, "K"), n=0.85), ) self.nC4H8 = Species( label='n-C4H8', conformer=Conformer( E0=(-17.8832, 'kJ/mol'), modes=[ IdealGasTranslation(mass=(56.06, "g/mol")), NonlinearRotor(inertia=([22.2748, 122.4, 125.198], "amu*angstrom^2"), symmetry=1), HarmonicOscillator(frequencies=([ 308.537, 418.67, 636.246, 788.665, 848.906, 936.762, 979.97, 1009.48, 1024.22, 1082.96, 1186.38, 1277.55, 1307.65, 1332.87, 1396.67, 1439.09, 1469.71, 1484.45, 1493.19, 1691.49, 2972.12, 2994.31, 3018.48, 3056.87, 3062.76, 3079.38, 3093.54, 3174.52 ], "cm^-1")), HinderedRotor(inertia=(5.28338, "amu*angstrom^2"), symmetry=1, fourier=([[ -0.579364, -0.28241, -4.46469, 0.143368, 0.126756 ], [ 1.01804, -0.494628, -0.00318651, -0.245289, 0.193728 ]], "kJ/mol")), HinderedRotor( inertia=(2.60818, "amu*angstrom^2"), symmetry=3, fourier=([[ 0.0400372, 0.0301986, -6.4787, -0.0248675, -0.0324753 ], [0.0312541, 0.0538, -0.493785, 0.0965968, 0.125292]], "kJ/mol")), ], spin_multiplicity=1, optical_isomers=1, ), ) self.H2O = Species( label='H2O', conformer=Conformer( E0=(-269.598, 'kJ/mol'), modes=[ IdealGasTranslation(mass=(18.01, "g/mol")), NonlinearRotor(inertia=([0.630578, 1.15529, 1.78586], "amu*angstrom^2"), symmetry=2), HarmonicOscillator( frequencies=([1622.09, 3771.85, 3867.85], "cm^-1")), ], spin_multiplicity=1, optical_isomers=1, ), ) self.N2 = Species( label='N2', molecular_weight=(28.04, "g/mol"), transport_data=TransportData(sigma=(3.41, "angstrom"), epsilon=(124, "K")), energy_transfer_model=None, ) self.TS = TransitionState( label='TS', conformer=Conformer( E0=(-42.4373, "kJ/mol"), modes=[ IdealGasTranslation(mass=(74.07, "g/mol")), NonlinearRotor(inertia=([40.518, 232.666, 246.092], "u*angstrom**2"), symmetry=1, quantum=False), HarmonicOscillator(frequencies=([ 134.289, 302.326, 351.792, 407.986, 443.419, 583.988, 699.001, 766.1, 777.969, 829.671, 949.753, 994.731, 1013.59, 1073.98, 1103.79, 1171.89, 1225.91, 1280.67, 1335.08, 1373.9, 1392.32, 1417.43, 1469.51, 1481.61, 1490.16, 1503.73, 1573.16, 2972.85, 2984.3, 3003.67, 3045.78, 3051.77, 3082.37, 3090.44, 3190.73, 3708.52 ], "kayser")), HinderedRotor(inertia=(2.68206, "amu*angstrom^2"), symmetry=3, barrier=(3.35244, "kcal/mol")), HinderedRotor(inertia=(9.77669, "amu*angstrom^2"), symmetry=1, fourier=([[ 0.208938, -1.55291, -4.05398, -0.105798, -0.104752 ], [ 2.00518, -0.020767, -0.333595, 0.137791, -0.274578 ]], "kJ/mol")), ], spin_multiplicity=1, optical_isomers=1, ), frequency=(-2038.34, 'cm^-1'), ) self.reaction = Reaction( label='dehydration', reactants=[self.nC4H10O], products=[self.nC4H8, self.H2O], transition_state=self.TS, ) self.network = Network( label='n-butanol', isomers=[Configuration(self.nC4H10O)], reactants=[], products=[Configuration(self.nC4H8, self.H2O)], path_reactions=[self.reaction], bath_gas={self.N2: 1.0}, )
def setUp(self): """ A method that is called prior to each unit test in this class. """ ethylene = Species( label = 'C2H4', conformer = Conformer( E0 = (44.7127, 'kJ/mol'), modes = [ IdealGasTranslation( mass = (28.0313, 'amu'), ), NonlinearRotor( inertia = ( [3.41526, 16.6498, 20.065], 'amu*angstrom^2', ), symmetry = 4, ), HarmonicOscillator( frequencies = ( [828.397, 970.652, 977.223, 1052.93, 1233.55, 1367.56, 1465.09, 1672.25, 3098.46, 3111.7, 3165.79, 3193.54], 'cm^-1', ), ), ], spinMultiplicity = 1, opticalIsomers = 1, ), ) hydrogen = Species( label = 'H', conformer = Conformer( E0 = (211.794, 'kJ/mol'), modes = [ IdealGasTranslation( mass = (1.00783, 'amu'), ), ], spinMultiplicity = 2, opticalIsomers = 1, ), ) ethyl = Species( label = 'C2H5', conformer = Conformer( E0 = (111.603, 'kJ/mol'), modes = [ IdealGasTranslation( mass = (29.0391, 'amu'), ), NonlinearRotor( inertia = ( [4.8709, 22.2353, 23.9925], 'amu*angstrom^2', ), symmetry = 1, ), HarmonicOscillator( frequencies = ( [482.224, 791.876, 974.355, 1051.48, 1183.21, 1361.36, 1448.65, 1455.07, 1465.48, 2688.22, 2954.51, 3033.39, 3101.54, 3204.73], 'cm^-1', ), ), HinderedRotor( inertia = (1.11481, 'amu*angstrom^2'), symmetry = 6, barrier = (0.244029, 'kJ/mol'), semiclassical = None, ), ], spinMultiplicity = 2, opticalIsomers = 1, ), ) TS = TransitionState( label = 'TS', conformer = Conformer( E0 = (266.694, 'kJ/mol'), modes = [ IdealGasTranslation( mass = (29.0391, 'amu'), ), NonlinearRotor( inertia = ( [6.78512, 22.1437, 22.2114], 'amu*angstrom^2', ), symmetry = 1, ), HarmonicOscillator( frequencies = ( [412.75, 415.206, 821.495, 924.44, 982.714, 1024.16, 1224.21, 1326.36, 1455.06, 1600.35, 3101.46, 3110.55, 3175.34, 3201.88], 'cm^-1', ), ), ], spinMultiplicity = 2, opticalIsomers = 1, ), frequency = (-750.232, 'cm^-1'), ) self.reaction = Reaction( reactants = [hydrogen, ethylene], products = [ethyl], kinetics = Arrhenius( A = (501366000.0, 'cm^3/(mol*s)'), n = 1.637, Ea = (4.32508, 'kJ/mol'), T0 = (1, 'K'), Tmin = (300, 'K'), Tmax = (2500, 'K'), ), transitionState = TS, ) # CC(=O)O[O] acetylperoxy = Species( label='acetylperoxy', thermo=Wilhoit(Cp0=(4.0*constants.R,"J/(mol*K)"), CpInf=(21.0*constants.R,"J/(mol*K)"), a0=-3.95, a1=9.26, a2=-15.6, a3=8.55, B=(500.0,"K"), H0=(-6.151e+04,"J/mol"), S0=(-790.2,"J/(mol*K)")), ) # C[C]=O acetyl = Species( label='acetyl', thermo=Wilhoit(Cp0=(4.0*constants.R,"J/(mol*K)"), CpInf=(15.5*constants.R,"J/(mol*K)"), a0=0.2541, a1=-0.4712, a2=-4.434, a3=2.25, B=(500.0,"K"), H0=(-1.439e+05,"J/mol"), S0=(-524.6,"J/(mol*K)")), ) # [O][O] oxygen = Species( label='oxygen', thermo=Wilhoit(Cp0=(3.5*constants.R,"J/(mol*K)"), CpInf=(4.5*constants.R,"J/(mol*K)"), a0=-0.9324, a1=26.18, a2=-70.47, a3=44.12, B=(500.0,"K"), H0=(1.453e+04,"J/mol"), S0=(-12.19,"J/(mol*K)")), ) self.reaction2 = Reaction( reactants=[acetyl, oxygen], products=[acetylperoxy], kinetics = Arrhenius( A = (2.65e12, 'cm^3/(mol*s)'), n = 0.0, Ea = (0.0, 'kJ/mol'), T0 = (1, 'K'), Tmin = (300, 'K'), Tmax = (2000, 'K'), ), )