Example #1
0
    def __init__(self, opt):
        super(MixerModel, self).__init__()
        self.vocab_size = opt.vocab_size
        self.input_encoding_size = opt.input_encoding_size
        self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        self.num_layers = opt.num_layers
        self.drop_prob_lm = opt.drop_prob_lm
        self.seq_length = opt.seq_length
        self.fc_feat_size = opt.fc_feat_size
        self.att_feat_size = opt.att_feat_size
        self.att_size = opt.att_size
        self.batch_size = 80

        # LSTM
        self.core = LSTM.LSTM_DOUBLE_ATT_TOP(self.input_encoding_size,
                                             self.vocab_size + 1,
                                             self.rnn_size,
                                             self.att_size,
                                             dropout=self.drop_prob_lm)

        # self.vocab_size + 1 -> self.input_encoding_size
        self.embed = nn.Embedding(self.vocab_size + 1,
                                  self.input_encoding_size)

        # (batch_size * fc_feat_size) -> (batch_size * input_encoding_size)
        self.img_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size)
        self.att_embed = nn.Linear(self.att_feat_size,
                                   self.input_encoding_size)
Example #2
0
    def __init__(self, opt):
        super(BiShowAttenTellModel, self).__init__()
        self.vocab_size = opt.vocab_size
        self.input_encoding_size = opt.input_encoding_size
        self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        self.num_layers = opt.num_layers
        self.drop_prob_lm = opt.drop_prob_lm
        self.seq_length = opt.seq_length
        self.fc_feat_size = opt.fc_feat_size
        self.att_feat_size = opt.att_feat_size
        self.att_size = opt.att_size
        self.output_size = self.vocab_size + 1

        # LSTM
        # self.core = nn.LSTM(self.input_encoding_size, self.rnn_size, self.num_layers, bias=False, dropout=self.drop_prob_lm)
        if self.rnn_type == "LSTM_SOFT_ATT":
            self.core = LSTM.LSTM_SOFT_ATT_TOP(self.input_encoding_size, self.output_size, self.rnn_size, self.att_size, dropout=self.drop_prob_lm)
            self.core1 = LSTM.LSTM_SOFT_ATT_TOP(self.input_encoding_size, self.output_size, self.rnn_size, self.att_size, dropout=self.drop_prob_lm)
        elif self.rnn_type == "LSTM_DOUBLE_ATT":
            self.core = LSTM.LSTM_DOUBLE_ATT_TOP(self.input_encoding_size, self.output_size, self.rnn_size, self.att_size, dropout=self.drop_prob_lm)
            self.core1 = LSTM.LSTM_DOUBLE_ATT_TOP(self.input_encoding_size, self.output_size, self.rnn_size, self.att_size, dropout=self.drop_prob_lm)
        else:
            raise Exception("rnn type not supported: {}".format(self.rnn_type))

        # self.vocab_size + 1 -> self.input_encoding_size
        self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)

        self.img_embed = nn.Linear(self.fc_feat_size, self.rnn_size)
        self.att_embed = nn.Linear(self.att_feat_size, self.rnn_size)

        self.proj = nn.Linear(self.rnn_size, self.output_size)

        # self.relu = nn.RReLU(inplace=True)
        self.relu = nn.PReLU()

        self.init_weight()