def train(loader, num_classes, device, net, optimizer, criterion): num_samples = 0 running_loss = 0 metrics = Metrics() net.train() for images, masks, _tile in tqdm(loader, desc="Train", unit="batch", ascii=True): images = images.to(device) masks = masks.to(device) assert images.size()[2:] == masks.size( )[1:], "resolutions for images and masks are in sync" num_samples += int(images.size(0)) optimizer.zero_grad() outputs = net(images) assert outputs.size()[2:] == masks.size( )[1:], "resolutions for predictions and masks are in sync" assert outputs.size( )[1] == num_classes, "classes for predictions and dataset are in sync" loss = criterion(outputs, masks) loss.backward() optimizer.step() running_loss += loss.item() for mask, output in zip(masks, outputs): prediction = output.detach() metrics.add(mask, prediction) assert num_samples > 0, "dataset contains training images and labels" class_stats = metrics.get_classification_stats() return { "loss": running_loss / num_samples, "miou": metrics.get_miou(), "fg_iou": metrics.get_fg_iou(), "mcc": metrics.get_mcc(), "accuracy": class_stats['accuracy'], "precision": class_stats['precision'], "recall": class_stats['recall'], "f1": class_stats['f1'] }
def validate(loader, num_classes, device, net, criterion): num_samples = 0 running_loss = 0 metrics = Metrics() net.eval() with torch.no_grad(): for images, masks, _tile in tqdm(loader, desc="Validate", unit="batch", ascii=True): images = images.to(device) masks = masks.to(device) assert images.size()[2:] == masks.size( )[1:], "resolutions for images and masks are in sync" num_samples += int(images.size(0)) outputs = net(images) assert outputs.size()[2:] == masks.size( )[1:], "resolutions for predictions and masks are in sync" assert outputs.size( )[1] == num_classes, "classes for predictions and dataset are in sync" loss = criterion(outputs, masks) running_loss += loss.item() for mask, output in zip(masks, outputs): metrics.add(mask, output) assert num_samples > 0, "dataset contains validation images and labels" class_stats = metrics.get_classification_stats() return { "loss": running_loss / num_samples, "miou": metrics.get_miou(), "fg_iou": metrics.get_fg_iou(), "mcc": metrics.get_mcc(), "accuracy": class_stats['accuracy'], "precision": class_stats['precision'], "recall": class_stats['recall'], "f1": class_stats['f1'] }