def main(): # CID is used to run on the department cluster CID = opts.cluster if (opts.load != 'none'): CID = opts.load X_train, X_test, Y_train, Y_test, enc = f.get_data() model = bulid_model( X_train, X_test, Y_train, Y_test, CID, fromfile=opts.load) newData = X_test.reshape(X_test.shape[0], 1, 100, 20) Y_score = model.predict_proba(X_test) roc.roc_plot( Y_test, Y_score, 2, filepath=os.path.join('figures', CID + 'roc.jpg'),title="CNN 2D AVG pool") Y_de = decode_y(Y_test, features=enc.active_features_) Y_pred = model.predict(X_test) Y_depred = decode_y(Y_pred, features=enc.active_features_) print(classification_report(Y_de, Y_depred)) return
def main(): CID = opts.cluster if (opts.load != 'none'): CID = opts.load X_train, X_test, Y_train, Y_test, X, X2, X3, enc = f.get_data_pro( testsize=0.2) model = bulid_model(X_train, X_test, Y_train, Y_test, X, X2, X3, CID, fromfile=opts.load) newData = X_test.reshape(X_test.shape[0], 1, 100, 20) Y_score = model.predict_proba(X_test) roc.roc_plot(Y_test, Y_score, 2, filepath=os.path.join('figures', CID + opts.title + 'roc.svg'), fmt='svg', title=opts.title) Y_de = decode_y(Y_test, features=enc.active_features_) Y_pred = model.predict(X_test) Y_depred = decode_y(Y_pred, features=enc.active_features_) print(classification_report(Y_de, Y_depred)) return
SGDClassifier(loss='log', random_state=42, shuffle=True, alpha=0.0001 * 0.75, penalty='l1', max_iter=20)), ]) _ = clf2.fit(train_data, train_target) predicted = clf2.predict(test_data) proba = clf2.predict_proba(test_data) ohenc = OneHotEncoder() Y2 = ohenc.fit_transform(test_target.reshape(-1, 1)).toarray() roc.roc_plot(Y2, proba, 2, filepath=os.path.join('figures', 'tradSGD' + 'roc.svg'), title='Logistic', fmt='svg') print(metrics.classification_report( test_target, predicted, )) print(accuracy_score(test_target, predicted)) """ try SVC """