Example #1
0
    def test_variables(self):
        N = 10
        ocp = Ocp(t0=2 * pi, T=10)
        p = ocp.parameter(grid='control')
        v = ocp.variable(grid='control')
        x = ocp.state()
        ocp.set_der(x, 0)
        ocp.subject_to(ocp.at_t0(x) == 0)

        ts = linspace(0, 10, N)

        ocp.add_objective(ocp.integral(sin(v - p)**2, grid='control'))
        ocp.method(MultipleShooting(N=N))
        ocp.solver('ipopt')
        ocp.set_value(p, ts)
        ocp.set_initial(v, ts)
        sol = ocp.solve()
        _, xs = sol.sample(v, grid='control')

        assert_array_almost_equal(xs[:-1], ts)
        ocp.set_initial(v, 0.1 + 2 * pi + ts)
        sol = ocp.solve()
        _, xs = sol.sample(v, grid='control')
        assert_array_almost_equal(xs[:-1], 2 * pi + ts)
        ocp.set_initial(v, 0.1 + ocp.t)
        sol = ocp.solve()
        _, xs = sol.sample(v, grid='control')
        assert_array_almost_equal(xs[:-1], 2 * pi + ts)
        ocp.set_initial(v, 0.1 + 2 * pi)
        sol = ocp.solve()
        _, xs = sol.sample(v, grid='control')
        with self.assertRaises(AssertionError):
            assert_array_almost_equal(xs[:-1], 2 * pi + ts)
Example #2
0
    def test_der(self):
        T = 1
        M = 1
        b = 1
        t0 = 0
        x0 = 0
        ocp = Ocp(t0=t0, T=T)

        x = ocp.state()
        u = ocp.control()

        ocp.set_der(x, u)

        y = 2 * x

        ocp.subject_to(ocp.der(y) <= 2 * b)
        ocp.subject_to(-2 * b <= ocp.der(y))

        ocp.add_objective(ocp.at_tf(x))
        ocp.subject_to(ocp.at_t0(x) == x0)

        ocp.solver('ipopt')

        ocp.method(MultipleShooting(N=4, M=M, intg='rk'))

        sol = ocp.solve()

        ts, xs = sol.sample(x, grid='control')

        self.assertAlmostEqual(xs[0], x0, places=6)
        self.assertAlmostEqual(xs[-1], x0 - b * T, places=6)
        self.assertAlmostEqual(ts[0], t0)
        self.assertAlmostEqual(ts[-1], t0 + T)
Example #3
0
    def test_integral(self):
        t0 = 1.2
        T = 5.7
        ocp = Ocp(t0=t0, T=T)

        x = ocp.state()
        u = ocp.control()
        ocp.set_der(x, u)

        ocp.subject_to(ocp.at_t0(x) == 0)
        ocp.subject_to(u <= 1)
        f = ocp.integral(x * ocp.t)
        ocp.add_objective(-f)  # (t-t0)*t -> t^3/3-t^2/2*t0
        ocp.solver('ipopt')
        opts = {"abstol": 1e-8, "reltol": 1e-8, "quad_err_con": True}
        for method in [
                MultipleShooting(intg='rk'),
                MultipleShooting(intg='cvodes', intg_options=opts),
                #MultipleShooting(intg='idas',intg_options=opts),
                DirectCollocation()
        ]:
            ocp.method(method)
            sol = ocp.solve()
            ts, xs = sol.sample(f, grid='control')
            I = lambda t: t**3 / 3 - t**2 / 2 * t0
            x_ref = I(t0 + T) - I(t0)

            assert_array_almost_equal(xs[-1], x_ref)
Example #4
0
    def test_param(self):
        ocp = Ocp(T=1)

        x = ocp.state()
        u = ocp.control()

        p = ocp.parameter()

        ocp.set_der(x, u)

        ocp.subject_to(u <= 1)
        ocp.subject_to(-1 <= u)

        ocp.add_objective(ocp.at_tf(x))
        ocp.subject_to(ocp.at_t0(x) == p)

        ocp.solver('ipopt')

        ocp.method(MultipleShooting())

        ocp.set_value(p, 0)
        sol = ocp.solve()

        ts, xs = sol.sample(x, grid='control')
        self.assertAlmostEqual(xs[0], 0)

        ocp.set_value(p, 1)
        sol = ocp.solve()

        ts, xs = sol.sample(x, grid='control')
        self.assertAlmostEqual(xs[0], 1)
Example #5
0
    def test_time_dep_ode(self):
        t0 = 1.2
        T = 5.7
        ocp = Ocp(t0=t0, T=5.7)

        x = ocp.state()
        ocp.set_der(x, ocp.t**2)

        ocp.subject_to(ocp.at_t0(x) == 0)

        tf = t0 + T
        x_ref = tf**3 / 3 - t0**3 / 3

        ocp.solver('ipopt')
        opts = {"abstol": 1e-9, "reltol": 1e-9}
        for method in [
                MultipleShooting(intg='rk'),
                MultipleShooting(intg='cvodes', intg_options=opts),
                MultipleShooting(intg='idas', intg_options=opts),
                DirectCollocation()
        ]:
            ocp.method(method)
            sol = ocp.solve()
            ts, xs = sol.sample(x, grid='control')
            x_ref = ts**3 / 3 - t0**3 / 3
            assert_array_almost_equal(xs, x_ref)
Example #6
0
def vdp(method,grid='control'):
  ocp = Ocp(T=10)

  # Define 2 states
  x1 = ocp.state()
  x2 = ocp.state()

  # Define 1 control
  u = ocp.control(order=0)

  # Specify ODE
  ocp.set_der(x1, (1 - x2**2) * x1 - x2 + u)
  ocp.set_der(x2, x1)

  # Lagrange objective
  ocp.add_objective(ocp.integral(x1**2 + x2**2 + u**2))

  # Path constraints
  ocp.subject_to(-1 <= (u <= 1))
  ocp.subject_to(x1 >= -0.25, grid=grid)

  # Initial constraints
  ocp.subject_to(ocp.at_t0(x1) == 0)
  ocp.subject_to(ocp.at_t0(x2) == 1)

  # Pick an NLP solver backend
  ocp.solver('ipopt')

  # Pick a solution method
  ocp.method(method)
  return (ocp, x1, x2, u)
Example #7
0
def integrator_control_problem(T=1, u_max=1, x0=0, stage_method=None, t0=0):
    if stage_method is None:
      stage_method = MultipleShooting()
    ocp = Ocp(t0=t0, T=T)

    x = ocp.state()
    u = ocp.control()

    ocp.set_der(x, u)

    ocp.subject_to(u <= u_max)
    ocp.subject_to(-u_max <= u)

    ocp.add_objective(ocp.at_tf(x))
    if x0 is not None:
        ocp.subject_to(ocp.at_t0(x) == x0)

    ocp.solver('ipopt')

    ocp.method(stage_method)

    return (ocp, x, u)
Example #8
0
    def test_basic_t0_free(self):
        xf = 2
        t0 = 0
        for T in [2]:
            for x0 in [0, 1]:
                for b in [1, 2]:
                    for method in [
                            MultipleShooting(N=4, intg='rk'),
                            MultipleShooting(N=4, intg='cvodes'),
                            MultipleShooting(N=4, intg='idas'),
                            DirectCollocation(N=4)
                    ]:
                        ocp = Ocp(t0=FreeTime(2), T=T)

                        x = ocp.state()
                        u = ocp.control()

                        ocp.set_der(x, u)
                        ocp.subject_to(u <= b)
                        ocp.subject_to(-b <= u)

                        ocp.add_objective(ocp.tf)
                        ocp.subject_to(ocp.at_t0(x) == x0)
                        ocp.subject_to(ocp.at_tf(x) == xf)
                        ocp.subject_to(ocp.t0 >= 0)

                        ocp.solver('ipopt')

                        ocp.method(method)

                        sol = ocp.solve()

                        ts, xs = sol.sample(x, grid='control')

                        self.assertAlmostEqual(xs[0], x0, places=6)
                        self.assertAlmostEqual(xs[-1], xf, places=6)
                        self.assertAlmostEqual(ts[0], t0)
                        self.assertAlmostEqual(ts[-1], t0 + T)
Example #9
0
def bang_bang_problem(stage_method):
    ocp = Ocp(T=FreeTime(1))

    p = ocp.state()
    v = ocp.state()
    u = ocp.control()

    ocp.set_der(p, v)
    ocp.set_der(v, u)

    ocp.subject_to(u <= 1)
    ocp.subject_to(-1 <= u)

    ocp.add_objective(ocp.T)
    ocp.subject_to(ocp.at_t0(p) == 0)
    ocp.subject_to(ocp.at_t0(v) == 0)
    ocp.subject_to(ocp.at_tf(p) == 1)
    ocp.subject_to(ocp.at_tf(v) == 0)

    ocp.solver('ipopt')

    ocp.method(stage_method)

    return (ocp, ocp.solve(), p, v, u)
Example #10
0
    def test_dae_casadi(self):
        # cross check with dae_colloation

        xref = 0.1  # chariot reference

        l = 1.  #- -> crane, + -> pendulum
        m = 1.
        M = 1.
        g = 9.81

        ocp = Ocp(T=5)

        x = ocp.state()
        y = ocp.state()
        w = ocp.state()
        dx = ocp.state()
        dy = ocp.state()
        dw = ocp.state()

        xa = ocp.algebraic()
        u = ocp.control()

        ocp.set_der(x, dx)
        ocp.set_der(y, dy)
        ocp.set_der(w, dw)
        ddx = (w - x) * xa / m
        ddy = g - y * xa / m
        ddw = ((x - w) * xa - u) / M
        ocp.set_der(dx, ddx)
        ocp.set_der(dy, ddy)
        ocp.set_der(dw, ddw)
        ocp.add_alg((x - w) * (ddx - ddw) + y * ddy + dy * dy + (dx - dw)**2)

        ocp.add_objective(
            ocp.at_tf((x - xref) * (x - xref) + (w - xref) * (w - xref) +
                      dx * dx + dy * dy))
        ocp.add_objective(
            ocp.integral((x - xref) * (x - xref) + (w - xref) * (w - xref)))

        ocp.subject_to(-2 <= (u <= 2))

        ocp.subject_to(ocp.at_t0(x) == 0)
        ocp.subject_to(ocp.at_t0(y) == l)
        ocp.subject_to(ocp.at_t0(w) == 0)
        ocp.subject_to(ocp.at_t0(dx) == 0)
        ocp.subject_to(ocp.at_t0(dy) == 0)
        ocp.subject_to(ocp.at_t0(dw) == 0)
        #ocp.subject_to(xa>=0,grid='integrator_roots')

        ocp.set_initial(y, l)
        ocp.set_initial(xa, 9.81)

        # Pick an NLP solver backend
        # NOTE: default scaling strategy of MUMPS leads to a singular matrix error
        ocp.solver(
            'ipopt', {
                "ipopt.linear_solver": "mumps",
                "ipopt.mumps_scaling": 0,
                "ipopt.tol": 1e-12
            })

        # Pick a solution method
        method = DirectCollocation(N=50)
        ocp.method(method)

        # Solve
        sol = ocp.solve()

        assert_array_almost_equal(
            sol.sample(xa, grid='integrator', refine=1)[1][0],
            9.81011622448889)
        assert_array_almost_equal(
            sol.sample(xa, grid='integrator', refine=1)[1][1],
            9.865726317147214)
        assert_array_almost_equal(
            sol.sample(xa, grid='integrator')[1][0], 9.81011622448889)
        assert_array_almost_equal(
            sol.sample(xa, grid='integrator')[1][1], 9.865726317147214)
        assert_array_almost_equal(
            sol.sample(xa, grid='control')[1][0], 9.81011622448889)
        assert_array_almost_equal(
            sol.sample(xa, grid='control')[1][1], 9.865726317147214)
Example #11
0
    return {'xsim': xsim, 'ysim': np.squeeze(xsim[0, :-1])}


#Define problem parameter
plant_param = {'m': 1, 'I': 1, 'L': 1, 'c': 1}
model_param = {'m': 1.2, 'I': 1.2, 'L': 0.9, 'c': 0.9}
N = 100
T = 10
tgrid = np.linspace(0, T, N)
y_ref_val = np.sin(tgrid)
x0 = [0, 0]

ocp = Ocp(t0=tgrid[0], T=tgrid[-1])

# Define states
x = ocp.state(2)

# Define controls
u = ocp.control()

# Specify ODE
model_rhs = pendulum_ode(x, u, model_param)
ocp.set_der(x, model_rhs)

# Set initial conditions
ocp.subject_to(ocp.at_t0(x) == x0)

# Define reference
y_ref = ocp.parameter(grid='control')
ocp.set_value(y_ref, y_ref_val)
Example #12
0
xlim_max = 5
ylim_min = -2
ylim_max = 6

N = 20
dt = 0.5  #effect unclear = how to connect this to rosrate ?

#------------- Initialize OCP

ocp = Ocp(T=N * dt)

#----------------------------------- waypoints ------------------------

#------------------------- System model

x = ocp.state()
y = ocp.state()
theta = ocp.state()

v = ocp.control()
w = ocp.control()

#--------------------------path parameters

s_obs = ocp.state()
sdot_obs = ocp.control()

#-----------------------------ODEs

ocp.set_der(x, v * cos(theta))
ocp.set_der(y, v * sin(theta))
Example #13
0
initial_pos_y = 0
xlim_min = -1
xlim_max = 5
ylim_min = -2
ylim_max = 6

N = 20
dt = 0.5  #effect unclear = how to connect this to rosrate ?

#------------- Initialize OCP

ocp = Ocp(T=N * dt)

#------------------------- System model

x = ocp.state()
y = ocp.state()
theta = ocp.state()

v = ocp.control()
w = ocp.control()

#-----------------------------ODEs

ocp.set_der(x, v * cos(theta))
ocp.set_der(y, v * sin(theta))
ocp.set_der(theta, w)

#-------------------------------------------------------------------------------#
#                            Solve the first iteration                          #
#-------------------------------------------------------------------------------#