def prepare_model(self): """ first step prepare model needs to be called by subclass in re-write process Necessary: subclass needs to init self._input_stream """ if self.config.MODEL_TYPE is 'od': self.download_model() self.load_frozen_graph() self.load_category_index() elif self.config.MODEL_TYPE is 'dl': self.download_model() self.load_frozen_graph() self.fps = FPS(self.config.FPS_INTERVAL).start() self._visualizer = Visualizer(self.config).start() return self
def segmentation(model,config): detection_graph = model.detection_graph # fixed input sizes as model needs resize either way vs = WebcamVideoStream(config.VIDEO_INPUT,640,480).start() resize_ratio = 1.0 * 513 / max(vs.real_width,vs.real_height) target_size = (int(resize_ratio * vs.real_width), int(resize_ratio * vs.real_height)) #(513, 384) tf_config = model.tf_config fps = FPS(config.FPS_INTERVAL).start() print("> Starting Segmentaion") with detection_graph.as_default(): with tf.Session(graph=detection_graph,config=tf_config) as sess: while vs.isActive(): frame = vs.resized(target_size) batch_seg_map = sess.run('SemanticPredictions:0', feed_dict={'ImageTensor:0': [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)]}) seg_map = batch_seg_map[0] #boxes = [] #labels = [] #ids = [] map_labeled = measure.label(seg_map, connectivity=1) for region in measure.regionprops(map_labeled): if region.area > config.MINAREA: box = region.bbox id = seg_map[tuple(region.coords[0])] label = config.LABEL_NAMES[id] #boxes.append(box) #labels.append(label) #ids.append(id) if config.VISUALIZE: draw_single_box_on_image(frame,box,label,id,config.DISCO_MODE) vis = visualize_deeplab(frame,seg_map,fps._glob_numFrames,config.MAX_FRAMES,fps.fps_local(), config.PRINT_INTERVAL,config.PRINT_TH,config.DL_DISPLAY_NAME, config.VISUALIZE,config.VIS_FPS,config.DISCO_MODE,config.ALPHA) if not vis: break fps.update() fps.stop() vs.stop()
def segmentation(model, config): detection_graph = model.detection_graph # fixed input sizes as model needs resize either way vs = WebcamVideoStream(config.VIDEO_INPUT, 640, 480).start() resize_ratio = 1.0 * 513 / max(vs.real_width, vs.real_height) target_size = (int(resize_ratio * vs.real_width), int(resize_ratio * vs.real_height)) #(513, 384) tf_config = tf.ConfigProto(allow_soft_placement=True) tf_config.gpu_options.allow_growth = True fps = FPS(config.FPS_INTERVAL).start() print("> Starting Segmentaion") with detection_graph.as_default(): with tf.Session(graph=detection_graph, config=tf_config) as sess: while vs.isActive(): frame = vs.resized(target_size) batch_seg_map = sess.run( 'SemanticPredictions:0', feed_dict={ 'ImageTensor:0': [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)] }) # visualization if config.VISUALIZE: seg_map = batch_seg_map[0] seg_image = create_colormap(seg_map).astype(np.uint8) cv2.addWeighted(seg_image, config.ALPHA, frame, 1 - config.ALPHA, 0, frame) vis_text(frame, "fps: {}".format(fps.fps_local()), (10, 30)) # boxes (ymin, xmin, ymax, xmax) if config.BBOX: map_labeled = measure.label(seg_map, connectivity=1) for region in measure.regionprops(map_labeled): if region.area > config.MINAREA: box = region.bbox p1 = (box[1], box[0]) p2 = (box[3], box[2]) cv2.rectangle(frame, p1, p2, (77, 255, 9), 2) vis_text( frame, config.LABEL_NAMES[seg_map[tuple( region.coords[0])]], (p1[0], p1[1] - 10)) cv2.imshow(config.DL_MODEL_NAME, frame) if cv2.waitKey(1) & 0xFF == ord('q'): break fps.update() fps.stop() vs.stop()
def detection(model,config): print("> Building Graph") # tf Session Config tf_config = tf.ConfigProto(allow_soft_placement=True) tf_config.gpu_options.allow_growth=True detection_graph = model.detection_graph category_index = model.category_index with detection_graph.as_default(): with tf.Session(graph=detection_graph,config=tf_config) as sess: # start Videostream vs = WebcamVideoStream(config.VIDEO_INPUT,config.WIDTH,config.HEIGHT).start() # Define Input and Ouput tensors tensor_dict = model.get_tensordict(['num_detections', 'detection_boxes', 'detection_scores','detection_classes', 'detection_masks']) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Mask Transformations fps = FPS(config.FPS_INTERVAL).start() print('> Starting Detection') while vs.isActive(): # Detection if not (config.USE_TRACKER): # default session frame = vs.read() output_dict = sess.run(tensor_dict, feed_dict={image_tensor: vs.expanded()}) num = output_dict['num_detections'][0] classes = output_dict['detection_classes'][0] boxes = output_dict['detection_boxes'][0] scores = output_dict['detection_scores'][0] if 'detection_masks' in output_dict: masks = output_dict['detection_masks'][0] else: masks = None # reformat detection num = int(num) boxes = np.squeeze(boxes) classes = np.squeeze(classes).astype(np.uint8) scores = np.squeeze(scores) # Visualization vis = vis_detection(frame, boxes, classes, scores, masks, category_index, fps.fps_local(), config.VISUALIZE, config.DET_INTERVAL, config.DET_TH, config.MAX_FRAMES, fps._glob_numFrames, config.OD_MODEL_NAME) if not vis: break fps.update() # End everything vs.stop() fps.stop()
def segmentation(model, config): detection_graph = model.detection_graph # fixed input sizes as model needs resize either way vs = WebcamVideoStream(config.VIDEO_INPUT, 640, 480).start() resize_ratio = 1.0 * 513 / max(vs.real_width, vs.real_height) target_size = (int(resize_ratio * vs.real_width), int(resize_ratio * vs.real_height)) #(513, 384) tf_config = model.tf_config fps = FPS(config.FPS_INTERVAL).start() print("> Starting Segmentaion") with detection_graph.as_default(): with tf.Session(graph=detection_graph, config=tf_config) as sess: while vs.isActive(): frame = vs.resized(target_size) batch_seg_map = sess.run( 'SemanticPredictions:0', feed_dict={ 'ImageTensor:0': [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)] }) seg_map = batch_seg_map[0] #boxes = [] #labels = [] map_labeled = measure.label(seg_map, connectivity=1) for region in measure.regionprops(map_labeled): if region.area > config.MINAREA: box = region.bbox label = config.LABEL_NAMES[seg_map[tuple( region.coords[0])]] #boxes.append(box) #labels.append(label) if config.VISUALIZE: draw_single_box_on_image(frame, box, label) vis = visualize_deeplab( frame, seg_map, fps._glob_numFrames, config.MAX_FRAMES, fps.fps_local(), config.PRINT_INTERVAL, config.PRINT_TH, config.OD_MODEL_NAME + config._DEV + config._OPT, config.VISUALIZE) if not vis: break fps.update() fps.stop() vs.stop()
class Model(object): """ Base Tensorflow Inference Model Class """ def __init__(self,config): self.config = config self.detection_graph = tf.Graph() self.category_index = None self.masks = None #self._tf_config = tf.compat.v1.ConfigProto(allow_soft_placement=True) self._tf_config = tf.ConfigProto(allow_soft_placement=True) self._tf_config.gpu_options.allow_growth=True #self._tf_config.gpu_options.force_gpu_compatible=True #self._tf_config.gpu_options.per_process_gpu_memory_fraction = 0.01 self._run_options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE) self._run_metadata = False self._wait_thread = False self._is_imageD = False self._is_videoD = False self._is_rosD = False print ('> Model: {}'.format(self.config.MODEL_PATH)) def download_model(self): """ downlaods model from model_zoo """ if self.config.MODEL_TYPE == 'dl': download_base = 'http://download.tensorflow.org/models/' elif self.config.MODEL_TYPE == 'od': download_base = 'http://download.tensorflow.org/models/object_detection/' model_file = self.config.MODEL_NAME + '.tar.gz' if not os.path.isfile(self.config.MODEL_PATH) and self.config.DOWNLOAD_MODEL: print('> Model not found. Downloading it now.') opener = urllib.request.URLopener() opener.retrieve(download_base + model_file, model_file) tar_file = tarfile.open(model_file) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, os.getcwd() + '/models/') os.remove(os.getcwd() + '/' + model_file) else: print('> Model found. Proceed.') def node_name(self,n): if n.startswith("^"): return n[1:] else: return n.split(":")[0] def load_frozen_graph(self): """ loads graph from frozen model file """ print('> Loading frozen model into memory') if (self.config.MODEL_TYPE == 'od' and self.config.SPLIT_MODEL): # load a frozen Model and split it into GPU and CPU graphs # Hardcoded split points for ssd_mobilenet tf.reset_default_graph() if self.config.SSD_SHAPE == 600: shape = 7326 else: shape = 1917 self.score = tf.placeholder(tf.float32, shape=(None, shape, self.config.NUM_CLASSES), name=self.config.SPLIT_NODES[0]) self.expand = tf.placeholder(tf.float32, shape=(None, shape, 1, 4), name=self.config.SPLIT_NODES[1]) #self.tofloat = tf.placeholder(tf.float32, shape=(None), name=self.config.SPLIT_NODES[2]) for node in tf.get_default_graph().as_graph_def().node: if node.name == self.config.SPLIT_NODES[0]: score_def = node if node.name == self.config.SPLIT_NODES[1]: expand_def = node #if node.name == self.config.SPLIT_NODES[2]: # tofloat_def = node with self.detection_graph.as_default(): graph_def = tf.GraphDef() with tf.gfile.GFile(self.config.MODEL_PATH, 'rb') as fid: serialized_graph = fid.read() graph_def.ParseFromString(serialized_graph) edges = {} name_to_node_map = {} node_seq = {} seq = 0 for node in graph_def.node: n = self.node_name(node.name) name_to_node_map[n] = node edges[n] = [self.node_name(x) for x in node.input] node_seq[n] = seq seq += 1 for d in self.config.SPLIT_NODES: assert d in name_to_node_map, "%s is not in graph" % d nodes_to_keep = set() next_to_visit = self.config.SPLIT_NODES[:] while next_to_visit: n = next_to_visit[0] del next_to_visit[0] if n in nodes_to_keep: continue nodes_to_keep.add(n) next_to_visit += edges[n] nodes_to_keep_list = sorted(list(nodes_to_keep), key=lambda n: node_seq[n]) nodes_to_remove = set() for n in node_seq: if n in nodes_to_keep_list: continue nodes_to_remove.add(n) nodes_to_remove_list = sorted(list(nodes_to_remove), key=lambda n: node_seq[n]) keep = graph_pb2.GraphDef() for n in nodes_to_keep_list: keep.node.extend([copy.deepcopy(name_to_node_map[n])]) remove = graph_pb2.GraphDef() remove.node.extend([score_def]) remove.node.extend([expand_def]) for n in nodes_to_remove_list: remove.node.extend([copy.deepcopy(name_to_node_map[n])]) with tf.device('/gpu:0'): tf.import_graph_def(keep, name='') with tf.device('/cpu:0'): tf.import_graph_def(remove, name='') else: # default model loading procedure with self.detection_graph.as_default(): graph_def = tf.GraphDef() with tf.gfile.GFile(self.config.MODEL_PATH, 'rb') as fid: serialized_graph = fid.read() graph_def.ParseFromString(serialized_graph) tf.import_graph_def(graph_def, name='') def load_category_index(self): """ creates categorie_index from label_map """ print('> Loading label map') label_map = tf_utils.load_labelmap(self.config.LABEL_PATH) categories = tf_utils.convert_label_map_to_categories(label_map, max_num_classes=self.config.NUM_CLASSES, use_display_name=True) self.category_index = tf_utils.create_category_index(categories) def get_tensor_dict(self, outputs): """ returns tensordict for given tensornames list """ ops = self.detection_graph.get_operations() all_tensor_names = {output.name for op in ops for output in op.outputs} self.tensor_dict = {} for key in outputs: tensor_name = key + ':0' if tensor_name in all_tensor_names: self.tensor_dict[key] = self.detection_graph.get_tensor_by_name(tensor_name) return self.tensor_dict def prepare_model(self): """ first step prepare model needs to be called by subclass in re-write process Necessary: subclass needs to init self._input_stream """ if self.config.MODEL_TYPE is 'od': self.download_model() self.load_frozen_graph() self.load_category_index() elif self.config.MODEL_TYPE is 'dl': self.download_model() self.load_frozen_graph() self.fps = FPS(self.config.FPS_INTERVAL).start() self._visualizer = Visualizer(self.config).start() return self def isActive(self): """ checks if stream and visualizer are active """ return self._input_stream.isActive() and self._visualizer.isActive() def stop(self): """ stops all Model sub classes """ self._input_stream.stop() self._visualizer.stop() self.fps.stop() if self.config.SPLIT_MODEL and self.config.MODEL_TYPE is 'od': self._gpu_worker.stop() self._cpu_worker.stop() def detect(self): """ needs to be written by subclass """ self.detection = None def run(self): """ runs detection loop on video or image listens on isActive() """ print("> starting detection") self.start() while self.isActive(): # detection self.detect() # Visualization if not self._wait_thread: self.visualize_detection() self.fps.update() self.stop() def start(self): """ starts fps and visualizer class """ self.fps.start() self._visualizer = Visualizer(self.config).start() def visualize_detection(self): self.detection = self._visualizer.visualize_detection(self.frame,self.boxes, self.classes,self.scores, self.masks,self.fps.fps_local(), self.category_index,self._is_imageD) def prepare_ros(self,node): """ prepares ros Node and ROSInputstream only in ros branch usable due to ROS realted package stuff """ assert node in ['detection_node','deeplab_node'], "only 'detection_node' and 'deeplab_node' supported" import rospy from ros import ROSStream, DetectionPublisher, SegmentationPublisher self._is_rosD = True rospy.init_node(node) self._input_stream = ROSStream(self.config.ROS_INPUT) if node is 'detection_node': self._ros_publisher = DetectionPublisher() if node is 'deeplab_node': self._ros_publisher = SegmentationPublisher() # check for frame while True: self.frame = self._input_stream.read() time.sleep(1) print("...waiting for ROS image") if self.frame is not None: self.stream_height,self.stream_width = self.frame.shape[0:2] break def prepare_timeliner(self): """ prepares timeliner and sets tf Run options """ self._run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) self._run_metadata = tf.RunMetadata() self.timeliner = TimeLiner() def prepare_tracker(self): """ prepares KCF tracker """ sys.path.append(os.getcwd()+'/rod/kcf') import KCF self._tracker = KCF.kcftracker(False, True, False, False) self._tracker_counter = 0 self._track = False def run_tracker(self): """ runs KCF tracker on videoStream frame !does not work on images, obviously! """ self.frame = self._input_stream.read() if self._first_track: self._trackers = [] self._tracker_boxes = self.boxes num_tracked = 0 for box in self.boxes[~np.all(self.boxes == 0, axis=1)]: self._tracker.init(conv_detect2track(box,self._input_stream.real_width, self._input_stream.real_height),self.tracker_frame) self._trackers.append(self._tracker) num_tracked += 1 if num_tracked <= self.config.NUM_TRACKERS: break self._first_track = False for idx,self._tracker in enumerate(self._trackers): tracker_box = self._tracker.update(self.frame) self._tracker_boxes[idx,:] = conv_track2detect(tracker_box, self._input_stream.real_width, self._input_stream.real_height) self._tracker_counter += 1 self.boxes = self._tracker_boxes # Deactivate Tracker if self._tracker_counter >= self.config.TRACKER_FRAMES: self._track = False self._tracker_counter = 0 def activate_tracker(self): """ activates KCF tracker deactivates mask detection """ #self.masks = None self.tracker_frame = self.frame self._track = True self._first_track = True
def detection(model,config): # Tracker if config.USE_TRACKER: import sys sys.path.append(os.getcwd()+'/stuff/kcf') import KCF tracker = KCF.kcftracker(False, True, False, False) tracker_counter = 0 track = False print("> Building Graph") # tf Session Config tf_config = model.tf_config detection_graph = model.detection_graph category_index = model.category_index with detection_graph.as_default(): with tf.Session(graph=detection_graph,config=tf_config) as sess: # start Videostream vs = WebcamVideoStream(config.VIDEO_INPUT,config.WIDTH,config.HEIGHT).start() # Define Input and Ouput tensors tensor_dict = model.get_tensordict(['num_detections', 'detection_boxes', 'detection_scores','detection_classes', 'detection_masks']) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Mask Transformations if 'detection_masks' in tensor_dict: # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size. detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0]) detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0]) real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32) detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1]) detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1]) detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, vs.real_height, vs.real_width) detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8) # Follow the convention by adding back the batch dimension tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0) if config.SPLIT_MODEL: score_out = detection_graph.get_tensor_by_name('Postprocessor/convert_scores:0') expand_out = detection_graph.get_tensor_by_name('Postprocessor/ExpandDims_1:0') score_in = detection_graph.get_tensor_by_name('Postprocessor/convert_scores_1:0') expand_in = detection_graph.get_tensor_by_name('Postprocessor/ExpandDims_1_1:0') # Threading score = model.score expand = model.expand gpu_worker = SessionWorker("GPU",detection_graph,tf_config) cpu_worker = SessionWorker("CPU",detection_graph,tf_config) gpu_opts = [score_out, expand_out] cpu_opts = [tensor_dict['detection_boxes'], tensor_dict['detection_scores'], tensor_dict['detection_classes'], tensor_dict['num_detections']] gpu_counter = 0 cpu_counter = 0 fps = FPS(config.FPS_INTERVAL).start() print('> Starting Detection') while vs.isActive(): # Detection if not (config.USE_TRACKER and track): if config.SPLIT_MODEL: # split model in seperate gpu and cpu session threads masks = None # No Mask Detection possible yet if gpu_worker.is_sess_empty(): # read video frame, expand dimensions and convert to rgb frame = vs.read() # put new queue gpu_feeds = {image_tensor: vs.expanded()} if config.VISUALIZE: gpu_extras = frame # for visualization frame else: gpu_extras = None gpu_worker.put_sess_queue(gpu_opts,gpu_feeds,gpu_extras) g = gpu_worker.get_result_queue() if g is None: # gpu thread has no output queue. ok skip, let's check cpu thread. gpu_counter += 1 else: # gpu thread has output queue. gpu_counter = 0 score,expand,frame = g["results"][0],g["results"][1],g["extras"] if cpu_worker.is_sess_empty(): # When cpu thread has no next queue, put new queue. # else, drop gpu queue. cpu_feeds = {score_in: score, expand_in: expand} cpu_extras = frame cpu_worker.put_sess_queue(cpu_opts,cpu_feeds,cpu_extras) c = cpu_worker.get_result_queue() if c is None: # cpu thread has no output queue. ok, nothing to do. continue cpu_counter += 1 continue # If CPU RESULT has not been set yet, no fps update else: cpu_counter = 0 boxes, scores, classes, num, frame = c["results"][0],c["results"][1],c["results"][2],c["results"][3],c["extras"] else: # default session frame = vs.read() output_dict = sess.run(tensor_dict, feed_dict={image_tensor: vs.expanded()}) num = output_dict['num_detections'][0] classes = output_dict['detection_classes'][0] boxes = output_dict['detection_boxes'][0] scores = output_dict['detection_scores'][0] if 'detection_masks' in output_dict: masks = output_dict['detection_masks'][0] else: masks = None # reformat detection num = int(num) boxes = np.squeeze(boxes) classes = np.squeeze(classes).astype(np.uint8) scores = np.squeeze(scores) # Visualization vis = vis_detection(frame, boxes, classes, scores, masks, category_index, fps.fps_local(), config.VISUALIZE, config.DET_INTERVAL, config.DET_TH, config.MAX_FRAMES, fps._glob_numFrames, config.OD_MODEL_NAME) if not vis: break # Activate Tracker if config.USE_TRACKER and num <= config.NUM_TRACKERS: tracker_frame = frame track = True first_track = True # Tracking else: frame = vs.read() if first_track: trackers = [] tracker_boxes = boxes for box in boxes[~np.all(boxes == 0, axis=1)]: tracker.init(conv_detect2track(box,vs.real_width, vs.real_height), tracker_frame) trackers.append(tracker) first_track = False for idx,tracker in enumerate(trackers): tracker_box = tracker.update(frame) tracker_boxes[idx,:] = conv_track2detect(tracker_box, vs.real_width, vs.real_height) vis = vis_detection(frame, tracker_boxes, classes, scores, masks, category_index, fps.fps_local(), config.VISUALIZE, config.DET_INTERVAL, config.DET_TH, config.MAX_FRAMES, fps._glob_numFrames, config.OD_MODEL_NAME) if not vis: break tracker_counter += 1 #tracker_frame = frame if tracker_counter >= config.TRACKER_FRAMES: track = False tracker_counter = 0 fps.update() # End everything vs.stop() fps.stop() if config.SPLIT_MODEL: gpu_worker.stop() cpu_worker.stop()
class Model(object): """ Base Tensorflow Inference Model Class """ def __init__(self, config): self.config = config self.detection_graph = tf.Graph() self.category_index = None self.masks = None self._tf_config = tf.ConfigProto(allow_soft_placement=True) self._tf_config.gpu_options.allow_growth = True self._run_options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE) self._run_metadata = False self._wait_thread = False print('> Model: {}'.format(self.config.MODEL_PATH)) def download_model(self): """ downlaods model from model_zoo """ if self.config.MODEL_TYPE == 'dl': download_base = 'http://download.tensorflow.org/models/' elif self.config.MODEL_TYPE == 'od': download_base = 'http://download.tensorflow.org/models/object_detection/' model_file = self.config.MODEL_NAME + '.tar.gz' if not os.path.isfile( self.config.MODEL_PATH) and self.config.DOWNLOAD_MODEL: print('> Model not found. Downloading it now.') opener = urllib.request.URLopener() opener.retrieve(download_base + model_file, model_file) tar_file = tarfile.open(model_file) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, os.getcwd() + '/models/') os.remove(os.getcwd() + '/' + model_file) else: print('> Model found. Proceed.') def _node_name(self, n): if n.startswith("^"): return n[1:] else: return n.split(":")[0] def load_frozenmodel(self): """ loads graph from frozen model file """ print('> Loading frozen model into memory') if (self.config.MODEL_TYPE == 'od' and self.config.SPLIT_MODEL): # load a frozen Model and split it into GPU and CPU graphs # Hardcoded split points for ssd_mobilenet input_graph = tf.Graph() with tf.Session(graph=input_graph, config=self._tf_config): if self.config.SSD_SHAPE == 600: shape = 7326 else: shape = 1917 self.score = tf.placeholder(tf.float32, shape=(None, shape, self.config.NUM_CLASSES), name=self.config.SPLIT_NODES[0]) self.expand = tf.placeholder(tf.float32, shape=(None, shape, 1, 4), name=self.config.SPLIT_NODES[1]) for node in input_graph.as_graph_def().node: if node.name == self.config.SPLIT_NODES[0]: score_def = node if node.name == self.config.SPLIT_NODES[1]: expand_def = node with self.detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.config.MODEL_PATH, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) edges = {} name_to_node_map = {} node_seq = {} seq = 0 for node in od_graph_def.node: n = self._node_name(node.name) name_to_node_map[n] = node edges[n] = [self._node_name(x) for x in node.input] node_seq[n] = seq seq += 1 for d in self.config.SPLIT_NODES: assert d in name_to_node_map, "%s is not in graph" % d nodes_to_keep = set() next_to_visit = self.config.SPLIT_NODES[:] while next_to_visit: n = next_to_visit[0] del next_to_visit[0] if n in nodes_to_keep: continue nodes_to_keep.add(n) next_to_visit += edges[n] nodes_to_keep_list = sorted(list(nodes_to_keep), key=lambda n: node_seq[n]) nodes_to_remove = set() for n in node_seq: if n in nodes_to_keep_list: continue nodes_to_remove.add(n) nodes_to_remove_list = sorted(list(nodes_to_remove), key=lambda n: node_seq[n]) keep = graph_pb2.GraphDef() for n in nodes_to_keep_list: keep.node.extend([copy.deepcopy(name_to_node_map[n])]) remove = graph_pb2.GraphDef() remove.node.extend([score_def]) remove.node.extend([expand_def]) for n in nodes_to_remove_list: remove.node.extend( [copy.deepcopy(name_to_node_map[n])]) with tf.device('/gpu:0'): tf.import_graph_def(keep, name='') with tf.device('/cpu:0'): tf.import_graph_def(remove, name='') else: # default model loading procedure with self.detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.config.MODEL_PATH, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') def load_labelmap(self): """ creates categorie_index from label_map """ print('> Loading label map') label_map = tf_utils.load_labelmap(self.config.LABEL_PATH) categories = tf_utils.convert_label_map_to_categories( label_map, max_num_classes=self.config.NUM_CLASSES, use_display_name=True) self.category_index = tf_utils.create_category_index(categories) def get_tensordict(self, outputs): """ returns tensordict for given tensornames list """ ops = self.detection_graph.get_operations() all_tensor_names = {output.name for op in ops for output in op.outputs} self.tensor_dict = {} for key in outputs: tensor_name = key + ':0' if tensor_name in all_tensor_names: self.tensor_dict[ key] = self.detection_graph.get_tensor_by_name(tensor_name) return self.tensor_dict def prepare_model(self): """ first step prepare model needs to be called by subclass in re-write process Necessary: subclass needs to init self._input_stream """ if self.config.MODEL_TYPE is 'od': self.download_model() self.load_frozenmodel() self.load_labelmap() elif self.config.MODEL_TYPE is 'dl': self.download_model() self.load_frozenmodel() self.fps = FPS(self.config.FPS_INTERVAL).start() self._visualizer = Visualizer(self.config).start() return self def isActive(self): """ checks if stream and visualizer are active """ return self._input_stream.isActive() and self._visualizer.isActive() def stop(self): """ stops all sub classes """ self._input_stream.stop() self._visualizer.stop() self.fps.stop() if self.config.SPLIT_MODEL and self.config.MODEL_TYPE is 'od': self._gpu_worker.stop() self._cpu_worker.stop() def detect(self): """ needs to be written by subclass """ self.detection = None def run(self): """ runs detection loop on video or image listens on isActive() """ print("> starting detection") self.start() while self.isActive(): # detection self.detect() # Visualization if not self._wait_thread: self.visualize_detection() self.fps.update() self.stop() def start(self): """ starts fps and visualizer class """ self.fps.start() self._visualizer = Visualizer(self.config).start() def visualize_detection(self): self.detection = self._visualizer.visualize_detection( self.frame, self.boxes, self.classes, self.scores, self.masks, self.fps.fps_local(), self.category_index)
def detection(model,config): # Tracker if config.USE_TRACKER: import sys sys.path.append(os.getcwd()+'/rod/kcf') import KCF tracker = KCF.kcftracker(False, True, False, False) tracker_counter = 0 track = False print("> Building Graph") # tf Session Config tf_config = model.tf_config detection_graph = model.detection_graph category_index = model.category_index with detection_graph.as_default(): with tf.Session(graph=detection_graph,config=tf_config) as sess: # start Videostream vs = WebcamVideoStream(config.VIDEO_INPUT,config.WIDTH,config.HEIGHT).start() # Define Input and Ouput tensors tensor_dict = model.get_tensordict(['num_detections', 'detection_boxes', 'detection_scores','detection_classes', 'detection_masks']) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Mask Transformations if 'detection_masks' in tensor_dict: # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size. detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0]) detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0]) real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32) detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1]) detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1]) detection_masks_reframed = reframe_box_masks_to_image_masks( detection_masks, detection_boxes, vs.real_height, vs.real_width) detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8) # Follow the convention by adding back the batch dimension tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0) if config.SPLIT_MODEL: score_out = detection_graph.get_tensor_by_name('Postprocessor/convert_scores:0') expand_out = detection_graph.get_tensor_by_name('Postprocessor/ExpandDims_1:0') score_in = detection_graph.get_tensor_by_name('Postprocessor/convert_scores_1:0') expand_in = detection_graph.get_tensor_by_name('Postprocessor/ExpandDims_1_1:0') # Threading score = model.score expand = model.expand gpu_worker = SessionWorker("GPU",detection_graph,tf_config) cpu_worker = SessionWorker("CPU",detection_graph,tf_config) gpu_opts = [score_out, expand_out] cpu_opts = [tensor_dict['detection_boxes'], tensor_dict['detection_scores'], tensor_dict['detection_classes'], tensor_dict['num_detections']] fps = FPS(config.FPS_INTERVAL).start() masks = None print('> Starting Detection') while vs.isActive(): # Detection if not (config.USE_TRACKER and track): if config.SPLIT_MODEL: # split model in seperate gpu and cpu session threads if gpu_worker.is_sess_empty(): # read video frame, expand dimensions and convert to rgb frame = vs.read() # put new queue gpu_feeds = {image_tensor: vs.expanded()} if config.VISUALIZE: gpu_extras = frame # for visualization frame else: gpu_extras = None gpu_worker.put_sess_queue(gpu_opts,gpu_feeds,gpu_extras) g = gpu_worker.get_result_queue() if g is None: # gpu thread has no output queue. ok skip, let's check cpu thread. pass else: # gpu thread has output queue. score,expand,frame = g["results"][0],g["results"][1],g["extras"] if cpu_worker.is_sess_empty(): # When cpu thread has no next queue, put new queue. # else, drop gpu queue. cpu_feeds = {score_in: score, expand_in: expand} cpu_extras = frame cpu_worker.put_sess_queue(cpu_opts,cpu_feeds,cpu_extras) c = cpu_worker.get_result_queue() if c is None: # cpu thread has no output queue. ok, nothing to do. continue continue # If CPU RESULT has not been set yet, no fps update else: boxes, scores, classes, num, frame = c["results"][0],c["results"][1],c["results"][2],c["results"][3],c["extras"] else: # default session frame = vs.read() output_dict = sess.run(tensor_dict, feed_dict={image_tensor: vs.expanded()}) num = output_dict['num_detections'][0] classes = output_dict['detection_classes'][0] boxes = output_dict['detection_boxes'][0] scores = output_dict['detection_scores'][0] if 'detection_masks' in output_dict: masks = output_dict['detection_masks'][0] # reformat detection num = int(num) boxes = np.squeeze(boxes) classes = np.squeeze(classes).astype(np.uint8) scores = np.squeeze(scores) # Visualization vis = visualize_objectdetection(frame,boxes,classes,scores,masks,category_index,fps._glob_numFrames, config.MAX_FRAMES,fps.fps_local(),config.PRINT_INTERVAL,config.PRINT_TH, config.OD_DISPLAY_NAME,config.VISUALIZE,config.VIS_FPS,config.DISCO_MODE,config.ALPHA) if not vis: break # Activate Tracker if config.USE_TRACKER and num <= config.NUM_TRACKERS: tracker_frame = frame track = True first_track = True # Tracking else: frame = vs.read() if first_track: trackers = [] tracker_boxes = boxes for box in boxes[~np.all(boxes == 0, axis=1)]: tracker.init(conv_detect2track(box,vs.real_width, vs.real_height), tracker_frame) trackers.append(tracker) first_track = False for idx,tracker in enumerate(trackers): tracker_box = tracker.update(frame) tracker_boxes[idx,:] = conv_track2detect(tracker_box, vs.real_width, vs.real_height) vis = visualize_objectdetection(frame,tracker_boxes,classes,scores,masks,category_index,fps._glob_numFrames, config.MAX_FRAMES,fps.fps_local(),config.PRINT_INTERVAL,config.PRINT_TH, config.OD_DISPLAY_NAME,config.VISUALIZE,config.VIS_FPS,config.DISCO_MODE,config.ALPHA) if not vis: break tracker_counter += 1 #tracker_frame = frame if tracker_counter >= config.TRACKER_FRAMES: track = False tracker_counter = 0 fps.update() # End everything vs.stop() fps.stop() if config.SPLIT_MODEL: gpu_worker.stop() cpu_worker.stop()