Example #1
0
def check_deg_block(s, k, i):
    fc = s.drillstring.pdm.failure
    fc.rogp.set_tanh(False)
    # Initialize parameters
    alpha = 1 - (1 - s.alpha) / (len(s.Xm) + 1)
    F = sp.stats.norm.ppf(alpha)
    X = s.X[k:i]
    Xvar = s.Xvar
    delta = {s.X[j]: Xvar[j + 1] - Xvar[j] for j in range(k, i)}
    dp = [[s.m.rop[x].deltap()] for x in X]
    dp = _to_np_obj_array(dp)
    # TODO: make eps = 0.001 a parameter
    dt = [[delta[x] / (s.m.rop[x].V + 0.001)] for x in X]
    dt = [[x[0]()] for x in dt]
    dt = _to_np_obj_array(dt)
    sep = Sep(X)
    r = _pyomo_to_np(sep.m.r, ind=X)

    # Calculate matrices
    Sig = fc.rogp.predict_cov_latent(dp).astype('float')
    inv = np.linalg.inv(Sig)
    hz = fc.rogp.warp(r)
    mu = fc.rogp.predict_mu_latent(dp)
    diff = hz - mu

    obj = np.matmul(dt.T, r)[0, 0]
    sep.m.Obj = p.Objective(expr=obj, sense=p.maximize)
    c = np.matmul(np.matmul(diff.T, inv), diff)[0, 0]
    sep.m.cons.add(c <= F)
    utils.solve(sep, solver='Baron')

    if obj() - 1.0 > 10e-5:
        return False

    return True
Example #2
0
def get_deg_block(s, k, i):
    fc = s.drillstring.pdm.failure
    fc.rogp.set_tanh(False)
    # Initialize parameters
    alpha = 1 - (1 - s.alpha) / (len(s.Xm) + 1)
    F = sp.stats.norm.ppf(alpha)
    X = s.X[k:i]
    Xvar = s.Xvar
    delta = {s.X[j]: Xvar[j + 1] - Xvar[j] for j in range(k, i)}
    dp = [[s.m.rop[x].deltap()] for x in X]
    dp = _to_np_obj_array(dp)
    # TODO: make eps = 0.001 a parameter
    dt = [[delta[x] / (s.m.rop[x].V + 0.001)] for x in X]
    dt = [[x[0]()] for x in dt]
    dt = _to_np_obj_array(dt)

    # Calculate matrices
    cov = fc.rogp.predict_cov_latent(dp).astype('float') * F
    mu = fc.rogp.predict_mu_latent(dp).astype('float')
    c = dt.astype('float')

    return mu, cov, c.flatten()
    def _add_deg_block(self, k, i):
        # Shorthands
        fc = self.drillstring.pdm.failure
        m = self.m
        # Initialize parameters
        alpha = 1 - (1 - self.alpha) / (len(self.Xm) + 1)
        F = sp.stats.norm.ppf(alpha)
        self.F = F
        X = self.X[k:i]
        Xvar = self.Xvar
        delta = {self.X[j]: Xvar[j + 1] - Xvar[j] for j in range(k, i)}
        dp = [[m.rop[x].deltap] for x in X]
        dp = _to_np_obj_array(dp)
        dt = [[delta[x] / (m.rop[x].V + eps)] for x in X]
        dt = _to_np_obj_array(dt)
        r = _pyomo_to_np(m.r, ind=X)

        # Calculate matrices
        Sig = fc.rogp.predict_cov_latent(dp)
        dHinv = 1 / fc.rogp.warp_deriv(r)
        dHinv = np.diag(dHinv[:, 0])
        hz = fc.rogp.warp(r)
        mu = fc.rogp.predict_mu_latent(dp)
        u = _pyomo_to_np(m.u, ind=X[-1:])

        LHS = np.matmul(Sig, dHinv)
        LHS = np.matmul(LHS, dt)
        RHS = LHS
        LHS = LHS + 2 * u * (hz - mu)
        # Add stationarity condition
        for lhs in np.nditer(LHS, ['refs_ok']):
            m.cons.add(lhs.item() == 0)
        RHS = np.matmul(dHinv, RHS)
        rhs = np.matmul(dt.T, RHS)[0, 0]
        lhs = 4 * u[0, 0]**2 * F
        # Dual variable constraint
        m.cons.add(lhs == rhs)
        # Primal constraint
        m.cons.add(np.matmul(dt.T, r).item() == m.R[X[-1]])
Example #4
0
    def _reformulate(self,
                     c,
                     param,
                     uncset,
                     counterpart,
                     initialize_wolfe=False):
        """
        Reformulate an uncertain constraint or objective

            c: Constraint or Objective
            param: UncParam
            uncset: UncSet
            counterpart: Block

        """

        # Only proceed if uncertainty set is WarpedGPSet
        from rogp.util.numpy import _pyomo_to_np, _to_np_obj_array

        repn = self.generate_repn_param(c)

        assert repn.is_linear(), ("Only constraints which are linear in "
                                  "the uncertain parameters are valid for "
                                  "uncertainty set WarpedGPSet.")

        # Constraint may contain subset of elements of UncParam
        index_set = [p.index() for p in repn.linear_vars]
        x = [[xi] for xi in repn.linear_coefs]
        x = _to_np_obj_array(x)

        # Set up Block for Wolfe duality constraints
        b = counterpart
        # Set up extra variables
        b.y = Var(param.index_set())
        # Set bounds for extra variables based on UncParam bounds
        for i in param:
            lb, ub = param[i].lb, param[i].ub
            b.y[i].setlb(lb)
            b.y[i].setub(ub)
            if ((lb is not None and lb is not float('-inf'))
                    and (ub is not None and ub is not float('inf'))):
                b.y[i].value = (ub + lb) / 2
        y = _pyomo_to_np(b.y, ind=index_set)
        # Setup dual vars based on sense
        if c.ctype is Constraint:
            if c.has_ub() and not c.has_lb():
                b.u = Var(within=NonPositiveReals)
            elif not c.has_ub() and c.has_lb():
                b.u = Var(within=NonNegativeReals)
            else:
                raise RuntimeError(
                    "Uncertain constraints with 'WarpedGPSet' "
                    "currently only support either an upper or a "
                    "lower bound, not both.")
        elif c.ctype is Objective:
            if c.sense is maximize:
                b.u = Var(within=NonPositiveReals)
            else:
                b.u = Var(within=NonNegativeReals)
        u = _pyomo_to_np(b.u)

        # Primal constraint
        sub_map = {id(param[i]): b.y[i] for i in param}
        if c.ctype is Constraint:
            e_new = replace_expressions(c.body, substitution_map=sub_map)
            b.primal = Constraint(rule=lambda x: (c.lower, e_new, c.upper))
        else:
            e_new = replace_expressions(c.expr, substitution_map=sub_map)
            b.primal = Objective(expr=e_new, sense=c.sense)

        # Calculate matrices
        gp = uncset.gp
        var = uncset.var
        if type(var) is dict:
            z = [var[i] for i in index_set]
            z = _to_np_obj_array(z)
        else:
            var = var[0]
            assert var.index_set() == param.index_set(), (
                "Index set of `UncParam` and `var` in `WarpedGPSet` "
                "should be the same. Alternatively use "
                "var = {index: [list of vars]}")
            z = _pyomo_to_np(var, ind=index_set)

        Sig = gp.predict_cov_latent(z)
        mu = gp.predict_mu_latent(z)
        dHinv = 1 / gp.warp_deriv(y)
        dHinv = np.diag(dHinv[:, 0])
        hz = gp.warp(y)

        LHS = np.matmul(Sig, dHinv)
        LHS = np.matmul(LHS, x)
        RHS = LHS
        LHS = LHS + 2 * u * (hz - mu)
        # Add stationarity condition
        b.stationarity = ConstraintList()
        for lhs in np.nditer(LHS, ['refs_ok']):
            b.stationarity.add(lhs.item() == 0)
        RHS = np.matmul(dHinv, RHS)
        rhs = np.matmul(x.T, RHS)[0, 0]
        lhs = 4 * u[0, 0]**2 * uncset.F
        # Set consistent initial value for u (helps convergence)
        if initialize_wolfe:
            u0 = np.sqrt(rhs() / 4 / uncset.F)
            if u[0, 0].ub == 0:
                u[0, 0].value = -u0
            elif u[0, 0].lb == 0:
                u[0, 0].value = u0
        # Dual variable constraint
        b.dual = Constraint(expr=lhs == rhs)
Example #5
0
    def _reformulate(self, c, param, uncset, counterpart):
        """
        Reformulate an uncertain constraint or objective

            c: Constraint or Objective
            param: UncParam
            uncset: UncSet
            counterpart: Block

        """
        from rogp.util.numpy import _pyomo_to_np, _to_np_obj_array

        repn = self.generate_repn_param(c)

        assert repn.is_linear(), ("Only constraints which are linear in "
                                  "the uncertain parameters are valid for "
                                  "uncertainty set 'GPSet'.")

        # Constraint may contain subset of elements of UncParam
        index_set = [p.index() for p in repn.linear_vars]
        x = [[xi] for xi in repn.linear_coefs]
        x = _to_np_obj_array(x)

        # Calculate matrices
        gp = uncset.gp
        var = uncset.var
        if type(var) is dict:
            pass
            z = [var[i] for i in index_set]
            z = _to_np_obj_array(z)
        else:
            var = var[0]
            assert var.index_set() == param.index_set(), (
                "Index set of `UncParam` and `var` in `GPSet` "
                "should be the same. Alternatively use "
                "var = {index: [list of vars]}")
            z = _pyomo_to_np(var, ind=index_set)

        Sig = gp.predict_cov(z)
        mu = gp.predict_mu(z)

        nominal = np.matmul(mu.T, x)[0, 0] + repn.constant

        padding = np.matmul(x.T, Sig)
        padding = np.matmul(padding, x)
        padding = uncset.F * pyomo_sqrt(padding[0, 0])

        # Counterpart
        if c.ctype is Constraint:
            if c.has_ub():
                e_new = nominal + padding <= c.upper
                c_new = Constraint(expr=e_new)
                counterpart.upper = c_new
            if c.has_lb():
                e_new = nominal - padding >= c.lower
                c_new = Constraint(expr=e_new)
                counterpart.lower = c_new
        else:
            e_new = nominal + padding * c.sense
            c_new = Objective(expr=e_new, sense=c.sense)
            counterpart.obj = c_new