def __init__(self, classes, class_agnostic): super(_fasterRCNN, self).__init__() self.classes = classes self.n_classes = len(classes) self.class_agnostic = class_agnostic # loss self.RCNN_loss_cls = 0 self.RCNN_loss_bbox = 0 # define rpn self.RCNN_rpn = _RPN(self.dout_base_model, anchor_scales=cfg.RCNN_COMMON.ANCHOR_SCALES, anchor_ratios=cfg.RCNN_COMMON.ANCHOR_RATIOS, feat_stride=cfg.RCNN_COMMON.FEAT_STRIDE[0]) self.RCNN_proposal_target = _ProposalTargetLayer(self.n_classes) self.RCNN_roi_pool = _RoIPooling(cfg.RCNN_COMMON.POOLING_SIZE, cfg.RCNN_COMMON.POOLING_SIZE, 1.0 / 16.0) self.RCNN_roi_align = RoIAlignAvg(cfg.RCNN_COMMON.POOLING_SIZE, cfg.RCNN_COMMON.POOLING_SIZE, 1.0 / 16.0) self.grid_size = cfg.RCNN_COMMON.POOLING_SIZE * 2 if cfg.RCNN_COMMON.CROP_RESIZE_WITH_MAX_POOL else cfg.RCNN_COMMON.POOLING_SIZE self.RCNN_roi_crop = _RoICrop()
def __init__(self, classes, class_agnostic, feat_name, feat_list=('conv4',), pretrained = True): super(fasterRCNN, self).__init__(classes, class_agnostic, feat_name, feat_list, pretrained) ##### Important to set model to eval mode before evaluation #### self.FeatExt.eval() rand_img = torch.Tensor(1, 3, 224, 224) rand_feat = self.FeatExt(rand_img) self.FeatExt.train() self.dout_base_model = rand_feat.size(1) self.RCNN_loss_cls = 0 self.RCNN_loss_bbox = 0 # define rpn self.RCNN_rpn = _RPN(self.dout_base_model, anchor_scales=cfg.RCNN_COMMON.ANCHOR_SCALES, anchor_ratios=cfg.RCNN_COMMON.ANCHOR_RATIOS, feat_stride=cfg.RCNN_COMMON.FEAT_STRIDE[0]) self.RCNN_proposal_target = _ProposalTargetLayer(self.n_classes) self.RCNN_roi_pool = _RoIPooling(cfg.RCNN_COMMON.POOLING_SIZE, cfg.RCNN_COMMON.POOLING_SIZE, 1.0/16.0) self.RCNN_roi_align = RoIAlignAvg(cfg.RCNN_COMMON.POOLING_SIZE, cfg.RCNN_COMMON.POOLING_SIZE, 1.0/16.0) self.grid_size = cfg.RCNN_COMMON.POOLING_SIZE * 2 if cfg.RCNN_COMMON.CROP_RESIZE_WITH_MAX_POOL else cfg.RCNN_COMMON.POOLING_SIZE self.RCNN_roi_crop = _RoICrop() self.iter_counter = 0
def __init__(self, classes, class_agnostic): super(_All_in_One, self).__init__() self.classes = classes self.n_classes = len(classes) self.class_agnostic = class_agnostic self._fs = cfg.FCGN.FEAT_STRIDE[0] # for resnet if self.dout_base_model is None: if self._fs == 16: self.dout_base_model = 256 * self.expansions elif self._fs == 32: self.dout_base_model = 512 * self.expansions # loss self.VMRN_obj_loss_cls = 0 self.VMRN_obj_loss_bbox = 0 # define rpn self.VMRN_obj_rpn = _RPN(self.dout_base_model, anchor_scales=cfg.RCNN_COMMON.ANCHOR_SCALES, anchor_ratios=cfg.RCNN_COMMON.ANCHOR_RATIOS, feat_stride=self._fs) self.VMRN_obj_proposal_target = _ProposalTargetLayer(self.n_classes) self.VMRN_obj_roi_pool = _RoIPooling(cfg.RCNN_COMMON.POOLING_SIZE, cfg.RCNN_COMMON.POOLING_SIZE, 1.0 / 16.0) self.VMRN_obj_roi_align = RoIAlignAvg(cfg.RCNN_COMMON.POOLING_SIZE, cfg.RCNN_COMMON.POOLING_SIZE, 1.0 / 16.0) self.grid_size = cfg.RCNN_COMMON.POOLING_SIZE * 2 if cfg.RCNN_COMMON.CROP_RESIZE_WITH_MAX_POOL else cfg.RCNN_COMMON.POOLING_SIZE self.VMRN_obj_roi_crop = _RoICrop() self._isex = cfg.TRAIN.VMRN.ISEX self.VMRN_rel_op2l = _OP2L(cfg.VMRN.OP2L_POOLING_SIZE, cfg.VMRN.OP2L_POOLING_SIZE, 1.0 / 16.0, self._isex) self._train_iter_conter = 0 self._MGN_as = cfg.FCGN.ANCHOR_SCALES self._MGN_ar = cfg.FCGN.ANCHOR_RATIOS self._MGN_aa = cfg.FCGN.ANCHOR_ANGLES # grasp detection components self.MGN_classifier = _Classifier(self.dout_base_model, 5, self._MGN_as, self._MGN_ar, self._MGN_aa) self.MGN_proposal_target = _GraspTargetLayer(self._fs, self._MGN_ar, self._MGN_as, self._MGN_aa) self._MGN_anchors = torch.from_numpy(generate_oriented_anchors(base_size=self._fs, scales=np.array(self._MGN_as), ratios=np.array(self._MGN_ar), angles=np.array(self._MGN_aa))).float() self._MGN_num_anchors = self._MGN_anchors.size(0) # [x1, y1, x2, y2] -> [xc, yc, w, h] self._MGN_anchors = torch.cat([ 0 * self._MGN_anchors[:, 0:1], 0 * self._MGN_anchors[:, 1:2], self._MGN_anchors[:, 2:3] - self._MGN_anchors[:, 0:1] + 1, self._MGN_anchors[:, 3:4] - self._MGN_anchors[:, 1:2] + 1, self._MGN_anchors[:, 4:5] ], dim=1) self._MGN_USE_POOLED_FEATS = cfg.MGN.USE_POOLED_FEATS
def __init__(self, classes, class_agnostic): super(_fastRCNN, self).__init__() self.classes = classes self.n_classes = len(classes) self.class_agnostic = class_agnostic # loss self.RCNN_loss_cls = 0 self.RCNN_loss_bbox = 0 self.RCNN_proposal_target = _ProposalTargetLayer(self.n_classes) self.RCNN_roi_pool = _RoIPooling(cfg.POOLING_SIZE, cfg.POOLING_SIZE, 1.0 / 16.0) self.RCNN_roi_align = RoIAlignAvg(cfg.POOLING_SIZE, cfg.POOLING_SIZE, 1.0 / 16.0) self.grid_size = cfg.POOLING_SIZE * 2 if cfg.CROP_RESIZE_WITH_MAX_POOL else cfg.POOLING_SIZE self.RCNN_roi_crop = _RoICrop()
def __init__(self, model_path = None): super(LVRN, self).__init__() self.up_sample = nn.UpsamplingBilinear2d(scale_factor = 2) self.maxpooling = nn.MaxPool2d(2,2) self.grid_size = 14 self.roi_crop = _RoICrop() self.features = self.load_model(model_path) self.fc_score = nn.Sequential( nn.Linear(512 * 49, 1024), nn.ReLU(True), nn.Dropout(), nn.Linear(1024, 512), nn.ReLU(True), nn.Dropout(), nn.Linear(512, 1) ) self.param_init() print(self)