Example #1
0
    def _make_linear_layers(self,
                            num_cls,
                            roipool=5,
                            fc=512,
                            emb=1024,
                            norm=True):
        lin_in = roipool * roipool
        self.roipool1 = _RoIPooling(roipool, roipool, 1)
        self.fc_pool1 = nn.Linear(lin_in * 64, fc)

        self.roipool2 = _RoIPooling(roipool, roipool, .5)
        self.fc_pool2 = nn.Linear(lin_in * 128, fc)

        self.roipool3 = _RoIPooling(roipool, roipool, .25)
        self.fc_pool3 = nn.Linear(lin_in * 256, fc)

        self.roipool4 = _RoIPooling(roipool, roipool, .125)
        self.fc_pool4 = nn.Linear(lin_in * 512, fc)

        self.roipool5 = _RoIPooling(roipool, roipool, .0625)
        self.fc_pool5 = nn.Linear(lin_in * 512, fc)

        self.fc_emb = nn.Linear(fc * 5, emb)
        self.class_scores1 = nn.Linear(fc * 5, num_cls)
        self.class_scores2 = nn.Linear(num_cls, num_cls)
    def __init__(self, classes, class_agnostic):
        super(_fasterRCNN, self).__init__()
        self.classes = classes
        self.n_classes = len(classes)
        self.class_agnostic = class_agnostic
        # loss
        self.RCNN_loss_cls = 0
        self.RCNN_loss_bbox = 0

        # define rpn
        self.RCNN_rpn = _RPN(self.dout_base_model,
                             anchor_scales=cfg.RCNN_COMMON.ANCHOR_SCALES,
                             anchor_ratios=cfg.RCNN_COMMON.ANCHOR_RATIOS,
                             feat_stride=cfg.RCNN_COMMON.FEAT_STRIDE[0])

        self.RCNN_proposal_target = _ProposalTargetLayer(self.n_classes)
        self.RCNN_roi_pool = _RoIPooling(cfg.RCNN_COMMON.POOLING_SIZE,
                                         cfg.RCNN_COMMON.POOLING_SIZE,
                                         1.0 / 16.0)
        self.RCNN_roi_align = RoIAlignAvg(cfg.RCNN_COMMON.POOLING_SIZE,
                                          cfg.RCNN_COMMON.POOLING_SIZE,
                                          1.0 / 16.0)

        self.grid_size = cfg.RCNN_COMMON.POOLING_SIZE * 2 if cfg.RCNN_COMMON.CROP_RESIZE_WITH_MAX_POOL else cfg.RCNN_COMMON.POOLING_SIZE
        self.RCNN_roi_crop = _RoICrop()
Example #3
0
    def __init__(self, classes, class_agnostic, feat_name, feat_list=('conv4',), pretrained = True):

        super(fasterRCNN, self).__init__(classes, class_agnostic, feat_name, feat_list, pretrained)
        ##### Important to set model to eval mode before evaluation ####
        self.FeatExt.eval()
        rand_img = torch.Tensor(1, 3, 224, 224)
        rand_feat = self.FeatExt(rand_img)
        self.FeatExt.train()
        self.dout_base_model = rand_feat.size(1)

        self.RCNN_loss_cls = 0
        self.RCNN_loss_bbox = 0

        # define rpn
        self.RCNN_rpn = _RPN(self.dout_base_model,
                             anchor_scales=cfg.RCNN_COMMON.ANCHOR_SCALES,
                             anchor_ratios=cfg.RCNN_COMMON.ANCHOR_RATIOS,
                             feat_stride=cfg.RCNN_COMMON.FEAT_STRIDE[0])

        self.RCNN_proposal_target = _ProposalTargetLayer(self.n_classes)
        self.RCNN_roi_pool = _RoIPooling(cfg.RCNN_COMMON.POOLING_SIZE, cfg.RCNN_COMMON.POOLING_SIZE, 1.0/16.0)
        self.RCNN_roi_align = RoIAlignAvg(cfg.RCNN_COMMON.POOLING_SIZE, cfg.RCNN_COMMON.POOLING_SIZE, 1.0/16.0)

        self.grid_size = cfg.RCNN_COMMON.POOLING_SIZE * 2 if cfg.RCNN_COMMON.CROP_RESIZE_WITH_MAX_POOL else cfg.RCNN_COMMON.POOLING_SIZE
        self.RCNN_roi_crop = _RoICrop()

        self.iter_counter = 0
Example #4
0
    def __init__(self, classes, class_agnostic):
        super(_All_in_One, self).__init__()
        self.classes = classes
        self.n_classes = len(classes)
        self.class_agnostic = class_agnostic

        self._fs = cfg.FCGN.FEAT_STRIDE[0]
        # for resnet
        if self.dout_base_model is None:
            if self._fs == 16:
                self.dout_base_model = 256 * self.expansions
            elif self._fs == 32:
                self.dout_base_model = 512 * self.expansions

        # loss
        self.VMRN_obj_loss_cls = 0
        self.VMRN_obj_loss_bbox = 0

        # define rpn
        self.VMRN_obj_rpn = _RPN(self.dout_base_model,
                             anchor_scales=cfg.RCNN_COMMON.ANCHOR_SCALES,
                             anchor_ratios=cfg.RCNN_COMMON.ANCHOR_RATIOS,
                             feat_stride=self._fs)

        self.VMRN_obj_proposal_target = _ProposalTargetLayer(self.n_classes)
        self.VMRN_obj_roi_pool = _RoIPooling(cfg.RCNN_COMMON.POOLING_SIZE, cfg.RCNN_COMMON.POOLING_SIZE, 1.0 / 16.0)
        self.VMRN_obj_roi_align = RoIAlignAvg(cfg.RCNN_COMMON.POOLING_SIZE, cfg.RCNN_COMMON.POOLING_SIZE, 1.0 / 16.0)

        self.grid_size = cfg.RCNN_COMMON.POOLING_SIZE * 2 if cfg.RCNN_COMMON.CROP_RESIZE_WITH_MAX_POOL else cfg.RCNN_COMMON.POOLING_SIZE
        self.VMRN_obj_roi_crop = _RoICrop()

        self._isex = cfg.TRAIN.VMRN.ISEX
        self.VMRN_rel_op2l = _OP2L(cfg.VMRN.OP2L_POOLING_SIZE, cfg.VMRN.OP2L_POOLING_SIZE, 1.0 / 16.0, self._isex)

        self._train_iter_conter = 0

        self._MGN_as = cfg.FCGN.ANCHOR_SCALES
        self._MGN_ar = cfg.FCGN.ANCHOR_RATIOS
        self._MGN_aa = cfg.FCGN.ANCHOR_ANGLES

        # grasp detection components
        self.MGN_classifier = _Classifier(self.dout_base_model, 5, self._MGN_as,
                                          self._MGN_ar, self._MGN_aa)
        self.MGN_proposal_target = _GraspTargetLayer(self._fs, self._MGN_ar,
                                                     self._MGN_as, self._MGN_aa)
        self._MGN_anchors = torch.from_numpy(generate_oriented_anchors(base_size=self._fs,
                                                       scales=np.array(self._MGN_as),
                                                       ratios=np.array(self._MGN_ar),
                                                       angles=np.array(self._MGN_aa))).float()
        self._MGN_num_anchors = self._MGN_anchors.size(0)
        # [x1, y1, x2, y2] -> [xc, yc, w, h]
        self._MGN_anchors = torch.cat([
            0 * self._MGN_anchors[:, 0:1],
            0 * self._MGN_anchors[:, 1:2],
            self._MGN_anchors[:, 2:3] - self._MGN_anchors[:, 0:1] + 1,
            self._MGN_anchors[:, 3:4] - self._MGN_anchors[:, 1:2] + 1,
            self._MGN_anchors[:, 4:5]
        ], dim=1)
        self._MGN_USE_POOLED_FEATS = cfg.MGN.USE_POOLED_FEATS
    def __init__(self, classes, class_agnostic):
        super(_FPN, self).__init__()
        self.classes = classes
        self.n_classes = len(classes)
        self.class_agnostic = class_agnostic
        # loss
        self.RCNN_loss_cls = 0
        self.RCNN_loss_bbox = 0

        # define rpns
        self._share_rpn = cfg.FPN.SHARE_RPN
        self._share_header = cfg.FPN.SHARE_HEADER

        self._num_pyramid_layers = len(cfg.RCNN_COMMON.FEAT_STRIDE)
        if self._share_rpn:
            self.RCNN_rpn = _RPN(self.dout_base_model,
                                 anchor_scales=cfg.RCNN_COMMON.ANCHOR_SCALES,
                                 anchor_ratios=cfg.RCNN_COMMON.ANCHOR_RATIOS,
                                 feat_stride=cfg.RCNN_COMMON.FEAT_STRIDE)
        else:
            self.RCNN_rpns = nn.ModuleList()
            for i in range(len(cfg.RCNN_COMMON.FEAT_STRIDE)):
                self.RCNN_rpns.append(
                    _RPN(self.dout_base_model,
                         anchor_scales=cfg.RCNN_COMMON.ANCHOR_SCALES,
                         anchor_ratios=cfg.RCNN_COMMON.ANCHOR_RATIOS,
                         feat_stride=cfg.RCNN_COMMON.FEAT_STRIDE[i])
                )

        self.RCNN_roi_aligns = nn.ModuleList()
        self.RCNN_roi_pools = nn.ModuleList()
        for i in range(len(cfg.RCNN_COMMON.FEAT_STRIDE)):
            self.RCNN_roi_aligns.append(
                RoIAlignAvg(cfg.RCNN_COMMON.POOLING_SIZE,
                            cfg.RCNN_COMMON.POOLING_SIZE,
                            1.0 / float(cfg.RCNN_COMMON.FEAT_STRIDE[i]))
            )

            self.RCNN_roi_pools.append(
                _RoIPooling(cfg.RCNN_COMMON.POOLING_SIZE,
                            cfg.RCNN_COMMON.POOLING_SIZE,
                            1.0 / float(cfg.RCNN_COMMON.FEAT_STRIDE[i]))
            )

        self.RCNN_proposal_target = _ProposalTargetLayer(self.n_classes)
Example #6
0
    def __init__(self, classes, class_agnostic):
        super(_fastRCNN, self).__init__()
        self.classes = classes
        self.n_classes = len(classes)
        self.class_agnostic = class_agnostic

        # loss
        self.RCNN_loss_cls = 0
        self.RCNN_loss_bbox = 0

        self.RCNN_proposal_target = _ProposalTargetLayer(self.n_classes)
        self.RCNN_roi_pool = _RoIPooling(cfg.POOLING_SIZE, cfg.POOLING_SIZE,
                                         1.0 / 16.0)
        self.RCNN_roi_align = RoIAlignAvg(cfg.POOLING_SIZE, cfg.POOLING_SIZE,
                                          1.0 / 16.0)

        self.grid_size = cfg.POOLING_SIZE * 2 if cfg.CROP_RESIZE_WITH_MAX_POOL else cfg.POOLING_SIZE
        self.RCNN_roi_crop = _RoICrop()
Example #7
0
    def __init__(self,
                 classes,
                 class_agnostic,
                 feat_name,
                 feat_list=('conv2', 'conv3', 'conv4', 'conv5'),
                 pretrained=True):
        super(FPN, self).__init__(classes, class_agnostic, feat_name,
                                  feat_list, pretrained)
        ##### Important to set model to eval mode before evaluation ####
        self.FeatExt.eval()
        rand_img = torch.Tensor(1, 3, 224, 224)
        rand_feat = self.FeatExt(rand_img)
        self.FeatExt.train()
        self.n_channels = [f.size(1) for f in rand_feat]

        self.dout_base_model = 256

        # loss
        self.RCNN_loss_cls = 0
        self.RCNN_loss_bbox = 0

        self._num_pyramid_layers = len(cfg.RCNN_COMMON.FEAT_STRIDE)
        self.RCNN_rpn = _RPN(self.dout_base_model,
                             anchor_scales=cfg.RCNN_COMMON.ANCHOR_SCALES,
                             anchor_ratios=cfg.RCNN_COMMON.ANCHOR_RATIOS,
                             feat_stride=cfg.RCNN_COMMON.FEAT_STRIDE)

        self.RCNN_roi_aligns = nn.ModuleList()
        self.RCNN_roi_pools = nn.ModuleList()
        for i in range(len(cfg.RCNN_COMMON.FEAT_STRIDE)):
            self.RCNN_roi_aligns.append(
                RoIAlignAvg(cfg.RCNN_COMMON.POOLING_SIZE,
                            cfg.RCNN_COMMON.POOLING_SIZE,
                            1.0 / float(cfg.RCNN_COMMON.FEAT_STRIDE[i])))

            self.RCNN_roi_pools.append(
                _RoIPooling(cfg.RCNN_COMMON.POOLING_SIZE,
                            cfg.RCNN_COMMON.POOLING_SIZE,
                            1.0 / float(cfg.RCNN_COMMON.FEAT_STRIDE[i])))

        self.RCNN_proposal_target = _ProposalTargetLayer(self.n_classes)
        self.iter_counter = 0
Example #8
0
    def __init__(self, anchors, all_anchors, inds_inside):
        super(TPN, self).__init__()
        # init some para
        self.image_shape = [[240, 320]
                            ]  # for one batch, TODO: maybe need to change here
        self.anchors = anchors  # (630, x, y, xw, yw)                anchors coordinates
        self.inds_inside = inds_inside
        self.all_anchors = all_anchors
        # get C3D part, use pretrained weight
        c3d = C3D()

        c3d.load_state_dict(torch.load(c3d_checkpoint))
        self.c3d_part1 = nn.Sequential(*list(
            c3d.modules())[1:4])  # be careful about these two indices
        # get conv2
        self.c3d_part2 = nn.Sequential(*list(c3d.modules())[4:13])  #

        self.BN1 = torch.nn.BatchNorm2d(512)
        #
        # for RPN
        self._CPN = CPN(self.anchors, all_anchors, inds_inside)

        self.n_classes = 22

        self.RCNN_proposal_target = _ProposalTargetLayer(self.n_classes)
        self.RCNN_roi_pool = _RoIPooling(cfg.POOLING_SIZE, cfg.POOLING_SIZE,
                                         1.0 / 16.0)

        self.head_to_tail_ = torch.nn.Sequential(
            nn.Linear(512 * 7 * 7,
                      1024),  # change from 4096 to 2048, for memory limit
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(1024,
                      4096),  # change from 4096 to 2048, for memory limit
            nn.ReLU(True))

        self.RCNN_bbox_pred = torch.nn.Linear(4096, 4 * self.n_classes)
        self.RCNN_cls_score = torch.nn.Linear(4096, self.n_classes)