def pts_in_boxes3d_cpu(pts, boxes3d):
    """
    :param pts: (N, 3) in rect-camera coords
    :param boxes3d: (M, 7)
    :return: boxes_pts_mask_list: (M), list with [(N), (N), ..]

    both inputs are pytorch tensors
    choose the points inside a bounding box and label them as a single instance
    """
    # if the pts tensor is not on GPU (it is on cpu)
    if not pts.is_cuda:
        pts = pts.float().contiguous()
        boxes3d = boxes3d.float().contiguous()

        # a table of which point is inside which box
        pts_flag = torch.LongTensor(torch.Size(
            (boxes3d.size(0), pts.size(0))))  # (M, N)

        # 'pts_in_boxes3d_cpu' is a cpp function that is in the src folder (it is imported using the code in setup.py)
        # it probably just fills the table 'pts_flag' (haven't ead it)
        roipool3d_cuda.pts_in_boxes3d_cpu(pts_flag, pts, boxes3d)

        boxes_pts_mask_list = []
        for k in range(0, boxes3d.shape[0]):
            cur_mask = pts_flag[k] > 0
            boxes_pts_mask_list.append(cur_mask)
        return boxes_pts_mask_list
    else:
        raise NotImplementedError
Example #2
0
def pts_in_boxes3d_cpu(pts, boxes3d):
    """
    :param pts: (N, 3) in rect-camera coords
    :param boxes3d: (M, 7)
    :return: boxes_pts_mask_list: (M), list with [(N), (N), ..]
    """
    if not pts.is_cuda:
        pts = pts.float().contiguous()
        boxes3d = boxes3d.float().contiguous()
        pts_flag = torch.LongTensor(torch.Size((boxes3d.size(0), pts.size(0))))  # (M, N)
        roipool3d_cuda.pts_in_boxes3d_cpu(pts_flag, pts, boxes3d)

        boxes_pts_mask_list = []
        for k in range(0, boxes3d.shape[0]):
            cur_mask = pts_flag[k] > 0
            boxes_pts_mask_list.append(cur_mask)
        return boxes_pts_mask_list
    else:
        raise NotImplementedError