Example #1
0
    def test_indexed_two_uncparams(self):
        m = pe.ConcreteModel()
        m.w = ro.UncParam([0, 1, 2])
        m.u = ro.UncParam()
        m.y = ro.AdjustableVar([0, 1, 2], uncparams=[m.w])
        m.z = ro.AdjustableVar([0, 1], uncparams=[m.w, m.u])
        m.cons = pe.Constraint(expr=m.u + sum(m.z[i] for i in m.z) <= 1)
        m.o = pe.Objective(expr=m.y[1] + m.u, sense=pe.maximize)

        t = LDRAdjustableTransformation()
        t.apply_to(m)

        self.assertTrue(hasattr(m, 'cons_ldr'))
        repn = generate_standard_repn(m.cons_ldr.body)
        self.assertEqual(len(repn.linear_vars), 1)
        self.assertEqual(len(repn.quadratic_vars), 8)
        baseline = set(
            (id(m.w[i]), id(m.z_w_coef[j, i])) for i in m.w for j in m.z)
        baseline = baseline.union(
            (id(m.u[None]), id(m.z_u_coef[j, None])) for j in m.z)
        for x in repn.quadratic_vars:
            self.assertIn((id(x[0]), id(x[1])), baseline)

        self.assertTrue(hasattr(m, 'o_ldr'))
        repn = generate_standard_repn(m.o_ldr.expr)
        self.assertEqual(len(repn.linear_vars), 1)
        self.assertEqual(id(repn.linear_vars[0]), id(m.u))
        self.assertEqual(len(repn.quadratic_vars), 3)
        baseline = set((id(m.w[i]), id(m.y_w_coef[1, i])) for i in m.w)
        for x in repn.quadratic_vars:
            self.assertIn((id(x[0]), id(x[1])), baseline)
Example #2
0
 def test_simple_adjustable(self):
     m = pe.ConcreteModel()
     m.w = ro.UncParam([0, 1, 2])
     m.y = ro.AdjustableVar(uncparams=[m.w])
     m.c = pe.Constraint(expr=m.w[0] + m.y <= 1)
     m.o = pe.Objective(expr=m.y + 3, sense=pe.maximize)
     t = NominalAdjustableTransformation()
     t.apply_to(m)
     self.assertTrue(hasattr(m, 'y_nominal'))
     self.assertIs(m.y_nominal.ctype, pe.Var)
     self.assertTrue(hasattr(m, 'c_nominal'))
     repn = generate_standard_repn(m.c_nominal.body)
     baseline = set([id(m.w[0]), id(m.y_nominal)])
     for x in repn.linear_vars:
         self.assertIn(id(x), baseline)
     self.assertEqual(repn.linear_coefs, (1, 1))
     self.assertEqual(repn.constant, 0)
     self.assertEqual(len(repn.quadratic_vars), 0)
     self.assertTrue(hasattr(m, 'o_nominal'))
     repn = generate_standard_repn(m.o_nominal.expr)
     self.assertEqual(len(repn.linear_vars), 1)
     self.assertEqual(id(repn.linear_vars[0]), id(m.y_nominal))
     self.assertEqual(len(repn.quadratic_vars), 0)
     self.assertEqual(len(repn.nonlinear_vars), 0)
     self.assertEqual(repn.constant, 3)
Example #3
0
    def test_equality_one_uncparam(self):
        m = pe.ConcreteModel()
        m.w = ro.UncParam([0, 1, 2])
        m.y = ro.AdjustableVar([0, 1], uncparams=[m.w])
        m.cons = pe.Constraint(expr=(sum(m.w[i]
                                         for i in m.w) == sum(2 * m.y[i]
                                                              for i in m.y)))

        t = LDRAdjustableTransformation()
        t.apply_to(m)

        self.assertTrue(hasattr(m, 'cons_ldr'))
        baseline = set()
        for i in m.w:
            id1 = id(m.y_w_coef[0, i])
            id2 = id(m.y_w_coef[1, i])
            if id1 < id2:
                baseline.add((id1, id2))
            else:
                baseline.add((id2, id1))
        for c in m.cons_ldr.values():
            repn = generate_standard_repn(c.body)
            self.assertEqual(repn.constant, 1)
            self.assertEqual(len(repn.linear_vars), 2)
            self.assertEqual(repn.linear_coefs, (-2, -2))
            self.assertEqual(len(repn.quadratic_vars), 0)

            id1 = id(repn.linear_vars[0])
            id2 = id(repn.linear_vars[1])
            if id1 < id2:
                self.assertIn((id1, id2), baseline)
            else:
                self.assertIn((id2, id1), baseline)
Example #4
0
def Facility():
    m = pe.ConcreteModel()
    # Define variables
    m.x = pe.Var(range(N), within=pe.Binary)
    # Define uncertainty set
    m.uncset = ro.UncSet()
    m.uncset.cons = pe.ConstraintList()
    # Define uncertain parameters
    m.demand = ro.UncParam(range(M), nominal=demand, uncset=m.uncset)
    m.y = ro.AdjustableVar(range(N), range(M), bounds=(0, None), uncparams=[m.demand])
    for i in range(M):
        m.uncset.cons.add(expr=pe.inequality(0.9*demand[i], m.demand[i], 1.1*demand[i]))

    # Add objective
    expr = 0
    for i in range(N):
        for j in range(M):
            expr += cost_transport[i][j]*m.y[i, j]
        expr += cost_facility[i]*m.x[i]
    m.obj = pe.Objective(expr=expr, sense=pe.minimize)

    # Add constraints
    def sum_y_rule(m, j):
        return sum(m.y[i, j] for i in range(N)) == m.demand[j]
    m.sum_y = pe.Constraint(range(M), rule=sum_y_rule)

    def max_demand_rule(m, i):
        lhs = sum(m.y[i, j] for j in range(M))
        return lhs <= max_dem[i]*m.x[i]
    m.max_dem = pe.Constraint(range(N), rule=max_demand_rule)

    # m.bound_x = pe.Constraint(expr=pe.quicksum(m.x[i] for i in m.x) >= 2)

    return m
Example #5
0
 def test_indexed_adjustable(self):
     m = pe.ConcreteModel()
     m.w = ro.UncParam([0, 1, 2])
     m.y = ro.AdjustableVar([0, 1], uncparams=[m.w])
     self.assertFalse(m.y[0].is_constant())
     self.assertTrue(m.y[1].is_potentially_variable())
     self.assertTrue(m.y[0].is_variable_type())
     self.assertFalse(m.y[1].is_parameter_type())
     self.assertIs(m.y[0].ctype, ro.AdjustableVar)
Example #6
0
    def test_indexed_one_uncparam_ldr(self):
        m = pe.ConcreteModel()
        m.w = ro.UncParam([0, 1, 2])
        m.u = ro.UncParam()
        m.y = ro.AdjustableVar([0, 1, 2], uncparams=[m.w])
        m.z = ro.AdjustableVar([0, 1], uncparams=[m.w, m.u])
        m.cons = pe.Constraint(expr=sum(m.y[i] for i in m.y) <= 1)

        t = LDRAdjustableTransformation()
        t.apply_to(m)

        self.assertTrue(hasattr(m, 'cons_ldr'))
        repn = generate_standard_repn(m.cons_ldr.body)
        self.assertEqual(len(repn.linear_vars), 0)
        self.assertEqual(len(repn.quadratic_vars), 9)
        baseline = set(
            (id(m.w[i]), id(m.y_w_coef[j, i])) for i in m.w for j in m.y)
        for x in repn.quadratic_vars:
            self.assertIn((id(x[0]), id(x[1])), baseline)
Example #7
0
 def test_set_uncparams(self):
     m = pe.ConcreteModel()
     m.w = ro.UncParam([0, 1, 2])
     m.y = ro.AdjustableVar([0, 1], uncparams=[m.w])
     m.y[0].set_uncparams([m.w[0], m.w[1]])
     self.assertEqual(id(m.y[0].uncparams[0]), id(m.w[0]))
     self.assertEqual(id(m.y[0].uncparams[1]), id(m.w[1]))
     self.assertEqual(len(m.y[0].uncparams), 2)
     self.assertEqual(id(m.y[1].uncparams[0]), id(m.w))
     self.assertEqual(len(m.y[1].uncparams), 1)
Example #8
0
    def test_equality_one_uncparam_cons(self):
        m = pe.ConcreteModel()
        m.w = ro.UncParam([0, 1, 2])
        m.x = pe.Var([0, 1])
        m.y = ro.AdjustableVar([0, 1], uncparams=[m.w])
        m.cons = pe.Constraint(expr=(sum(
            m.w[i] for i in m.w) == sum(2 * m.y[i] for i in m.y) + 1))

        t = LDRAdjustableTransformation()
        self.assertRaises(ValueError, lambda: t.apply_to(m))
Example #9
0
 def test_indexed_adjustable(self):
     m = pe.ConcreteModel()
     m.w = ro.UncParam([0, 1, 2])
     m.y = ro.AdjustableVar(range(2), uncparams=[m.w], bounds=(0, 6))
     m.y[1].fixed = True
     m.y[1].value = 2
     m.y[1].setub(5)
     m.y[0].setlb(1)
     m.c = pe.Constraint(expr=m.w[0] + m.y[0] + m.y[1] <= 1)
     m.o = pe.Objective(expr=m.y[0] - m.y[1] + 3, sense=pe.maximize)
     t = NominalAdjustableTransformation()
     t.apply_to(m)
     self.assertTrue(hasattr(m, 'y_nominal'))
     self.assertIs(m.y_nominal.ctype, pe.Var)
     self.assertTrue(m.y_nominal[1].fixed)
     self.assertEqual(m.y_nominal[1].value, 2)
     self.assertEqual(m.y_nominal[0].lb, 1)
     self.assertEqual(m.y_nominal[1].lb, 0)
     self.assertEqual(m.y_nominal[0].ub, 6)
     self.assertEqual(m.y_nominal[1].ub, 5)
     self.assertTrue(hasattr(m, 'c_nominal'))
     repn = generate_standard_repn(m.c_nominal.body)
     self.assertEqual(len(repn.linear_vars), 2)
     baseline = set([id(m.w[0]), id(m.y_nominal[0])])
     for x in repn.linear_vars:
         self.assertIn(id(x), baseline)
     self.assertEqual(repn.linear_coefs, (1, 1))
     self.assertEqual(repn.constant, m.y_nominal[1])
     self.assertEqual(len(repn.quadratic_vars), 0)
     self.assertTrue(hasattr(m, 'o_nominal'))
     repn = generate_standard_repn(m.o_nominal.expr, compute_values=False)
     self.assertEqual(len(repn.linear_vars), 1)
     self.assertEqual(id(x), id(repn.linear_vars[0]))
     self.assertEqual(len(repn.quadratic_vars), 0)
     self.assertEqual(len(repn.nonlinear_vars), 0)
     self.assertEqual(repn.constant, 3 - m.y[1])