def load_prism(self, d): """ load prism data for this day :param d: :type d: datetime :return: """ year = d.year month = d.month day = d.day shape = self._shape prism_base = 'PRISMD2_NMHW2mi_{}{:02n}{:02n}' name = prism_base.format(year, month, day) ppt = tif_to_array(self._prism_root, name) tom = d + timedelta(days=1) name = prism_base.format(year, tom.month, tom.day) ppt_tom = tif_to_array(self._prsim_root, name) ppt = maximum(ppt, zeros(shape)) ppt_tom = maximum(ppt_tom, zeros(shape)) # PRISM to mintemp, maxtemp, temp if year in YEARS: name = 'cai_tmin_us_us_30s_{}{:02n}{:02n}'.format(year, month, day) min_temp = tif_to_array(self._prism_min_temp_root, name) else: name = 'TempMin_NMHW2Buff_{}{:02n}{:02n}'.format(year, month, day) min_temp = tif_to_array(self._prism_min_temp_root, name) name = 'TempMax_NMHW2Buff_{}{:02n}{:02n}'.format(year, month, day) max_temp = tif_to_array(self._prism_max_temp_root, name) mid_temp = (min_temp + max_temp) / 2 return ppt, ppt_tom, max_temp, min_temp, mid_temp
def aws(): root = os.path.join('C:', 'Recharge_GIS', 'OSG_Data', 'current_use') name = 'aws_ras_15apr1' taw = tif_to_array(root, name) min_val = ones(taw.shape) * 0.001 taw = maximum(taw, min_val) params = tif_params(root, name) root = os.path.join('C:', 'Recharge_GIS', 'OSG_Data', 'qgis_rasters') name = 'aws_mm_21apr_std' taw_st = tif_to_array(root, name) taw_st = maximum(taw_st, min_val) result = where(taw_st > taw, taw_st, taw) now = datetime.now() tag = '{}_{}_{}_{}'.format(now.month, now.day, now.hour, now.minute) oroot = os.path.join('C:', 'Recharge_GIS', 'OSG_Data', 'qgis_rasters') for (name, data) in ((result, 'aws_mod'), (taw, 'taw')): logging.info('Saving {}'.format(name)) oname = os.path.join(oroot, '{}_{}.tif'.format(name, tag)) write_tiff(oname, params, data)
def calculate_ndvi_2000(self, doy): """ :param doy: :return: """ base_name = 'T{:03n}_{:03n}_2000_etrf_subset_001_048_ndvi_daily' if doy < 49: a = 1 b = 48 name = base_name.format(a, b) if self._verbose: logging.debug('calculate 1 {}'.format(name)) ndvi = tif_to_array(self._ndvi_root, name, band=doy) else: obj = [1, 49, 81, 113, 145, 177, 209, 241, 273, 305, 337] idx = next((num for num in obj[1:] if 0 <= doy - num <= 31)) diff = doy - idx offset = 29 if idx == 337 else 31 strt = idx nd = idx + offset name = base_name.format(strt, nd) if self._verbose: logging.debug('calculate 2 {}'.format(name)) ndvi = tif_to_array(self._ndvi_root, name, band=diff + 1) return ndvi
def load_array_results(self): """ :return: """ root = self._array_results_root tag = '4_19_23_11' de1 = tif_to_array(root, 'de_{}'.format(tag)) de1 = clean(de1) self._de = de1 dr1 = tif_to_array(root, 'dr_{}'.format(tag)) dr1 = clean(dr1) self._dr = dr1 drew = tif_to_array(root, 'drew_{}'.format(tag)) drew = clean(drew) self._drew = drew
def calculate_ndvi(self, year, doy): """ :param year: :param doy: :return: """ obj = [1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 257, 273, 289, 305, 321, 337, 353] idx = next((num for num in obj[1:] if 0 <= doy - num <= 15)) diff = doy - idx name = '{}_{}'.format(year, obj.index(idx) + 1) if self._verbose: logging.debug('calculate 4 {}'.format(name)) ndvi = tif_to_array(self._ndvi_root, name, band=diff + 1) return ndvi
def calculate_ndvi(self, year, doy): """ :param year: :param doy: :return: """ obj = [ 1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 257, 273, 289, 305, 321, 337, 353 ] idx = next((num for num in obj[1:] if 0 <= doy - num <= 15)) diff = doy - idx name = '{}_{}'.format(year, obj.index(idx) + 1) if self._verbose: logging.debug('calculate 4 {}'.format(name)) ndvi = tif_to_array(self._ndvi_root, name, band=diff + 1) return ndvi
def calculate_ndvi_2001(self, doy): """ :param doy: :return: """ obj = [1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 257, 273, 289, 305, 321, 337, 353] idx = next((num for num in obj[1:] if 0 <= doy - num <= 15)) diff = doy - idx offset = 12 if idx == 353 else 15 strt = idx nd = idx + offset name = '2001_{}_{}'.format(strt, nd) if self._verbose: logging.debug('calculate 3 {}'.format(name)) ndvi = tif_to_array(self._ndvi_root, name, band=diff + 1) return ndvi
def calculate_ndvi_2001(self, doy): """ :param doy: :return: """ obj = [ 1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 257, 273, 289, 305, 321, 337, 353 ] idx = next((num for num in obj[1:] if 0 <= doy - num <= 15)) diff = doy - idx offset = 12 if idx == 353 else 15 strt = idx nd = idx + offset name = '2001_{}_{}'.format(strt, nd) if self._verbose: logging.debug('calculate 3 {}'.format(name)) ndvi = tif_to_array(self._ndvi_root, name, band=diff + 1) return ndvi
def load_current_use(self): """ :return: """ root = self._current_use_root qDeps = tif_to_array(root, 'Q_deps_std') min_val = ones(qDeps.shape) * 0.001 qDeps = maximum(qDeps, min_val) aws = tif_to_array(root, 'aws_mod_4_21_10_0') aws = maximum(aws, min_val) self._dataset_params = tif_params(root, 'aws_mod_4_21_10_0') nlcd_rt_z = tif_to_array(root, 'nlcd_root_dpth_15apr') nlcd_rt_z = maximum(nlcd_rt_z, min_val) nlcd_plt_hgt = tif_to_array(root, 'nlcd_plnt_hgt1_250_m_degraded1') nlcd_plt_hgt = maximum(nlcd_plt_hgt, min_val) ksat = tif_to_array(root, 'Soil_Ksat_15apr') ksat = maximum(ksat, min_val) tew = tif_to_array(root, 'tew_250_15apr') tew = maximum(tew, min_val) self._qDeps = qDeps self._taw = aws self._nlcd_rt_z = nlcd_rt_z self._nlcd_plt_hgt = nlcd_plt_hgt self._ksat = ksat self._tew = tew self._min_val = min_val self._shape = aws.shape
def run_model(self): """ Run the model :return: """ shape = self._shape tew = self._tew taw = self._taw start_time = datetime.now() pkcb = zeros(shape) swe = zeros(shape) tot_snow = zeros(shape) tot_mass = zeros(shape) cum_mass = zeros(shape) ref_et = zeros(shape) a_min = ones(shape) * 0.45 a_max = ones(shape) * 0.90 a = a_max pA = a_min days = list(rrule.rrule(rrule.DAILY, dtstart=self._start, until=self._end)) nsteps = len(days) plt_day = zeros(nsteps) plt_rain = zeros(nsteps) plt_eta = zeros(nsteps) plt_snow_fall = zeros(nsteps) plt_ro = zeros(nsteps) plt_dr = zeros(nsteps) plt_de = zeros(nsteps) plt_drew = zeros(nsteps) plt_temp = zeros(nsteps) plt_dp_r = zeros(nsteps) plt_ks = zeros(nsteps) plt_pdr = zeros(nsteps) plt_etrs = zeros(nsteps) plt_kcb = zeros(nsteps) plt_ppt = zeros(nsteps) plt_ke = zeros(nsteps) plt_kr = zeros(nsteps) plt_mlt = zeros(nsteps) plt_swe = zeros(nsteps) plt_tempm = zeros(nsteps) plt_fs1 = zeros(nsteps) plt_mass = zeros(nsteps) p_mo_et = zeros(shape) p_mo_precip = zeros(shape) p_mo_ro = zeros(shape) p_mo_deps = self._dr + self._de + self._drew p_mo_infil = zeros(shape) p_mo_etrs = zeros(shape) p_yr_et = zeros(shape) p_yr_precip = zeros(shape) p_yr_ro = zeros(shape) p_yr_deps = self._dr + self._de + self._drew p_yr_infil = zeros(shape) p_yr_etrs = zeros(shape) start_month = self._start_month end_month = self._end_month for i, dday in enumerate(days): if i > 0: pkcb = kcb doy = dday.timetuple().tm_yday year = dday.year month = dday.month day = dday.day msg = 'Time : {} day {}_{}'.format(datetime.now() - start_time, doy, year) logging.debug(msg) # -------------- kcb ------------------- if year == 2000: ndvi = self.calculate_ndvi_2000(doy) elif year == 2001: ndvi = self.calculate_ndvi_2001(doy) else: ndvi = self.calculate_ndvi(year, doy) kcb = ndvi * 1.25 kcb = maximum(kcb, self._min_val) kcb = where(isnan(kcb), pkcb, kcb) # -------------- PRISM ------------------- ppt, ppt_tom, max_temp, min_temp, mid_temp = self.load_prism(dday) # -------------- PM ------------------- # PM data to etrs name = os.path.join('PM{}'.format(year), 'PM_NM_{}_{:03n}'.format(year, doy)) etrs = tif_to_array(self._pm_data_root, name) etrs = maximum(etrs, self._min_val) name = os.path.join('PM{}'.format(year), 'RLIN_NM_{}_{:03n}'.format(year, doy)) rlin = tif_to_array(self._pm_data_root, name) rlin = maximum(rlin, zeros(shape)) name = os.path.join('rad{}'.format(year), 'RTOT_{}_{:03n}'.format(year, doy)) rg = tif_to_array(self._pm_data_root, name) rg = maximum(rg, zeros(shape)) if i == 0: # Total evaporable water is depth of water in the evaporable # soil layer, i.e., the water available to both stage 1 and 2 evaporation rew = minimum((2 + (tew / 3.)), 0.8 * tew) # del tew1, tew2 # you should have all these from previous model runs pDr = self._dr pDe = self._de pDrew = self._drew dr = self._dr de = self._de drew = self._drew nom = 2 if start_month <= doy <= end_month else 6 ksat = self._ksat * nom / 24. kc_max_1 = kcb + 0.0001 min_val = ones(shape) * 0.0001 kc_max = maximum(min_val, kc_max_1) self._nlcd_plt_hgt = self._nlcd_plt_hgt * 0.5 + 1 numr = maximum(kcb - self._kc_min, min_val * 10) denom = maximum((kc_max - self._kc_min), min_val * 10) fcov_ref = (numr / denom) ** self._nlcd_plt_hgt fcov_min = minimum(fcov_ref, ones(shape)) fcov = maximum(fcov_min, min_val * 10) few = maximum(1 - fcov, 0.01) # exposed ground pKr = kr kr = minimum(((tew - de) / (tew - rew)), ones(shape)) kr = where(isnan(kr), pKr, kr) pKs = ks ks_ref = where(((taw - pDr) / (0.6 * taw)) < zeros(shape), ones(shape) * 0.001, ((taw - pDr) / (0.6 * taw))) ks_ref = where(isnan(ks), pKs, ks_ref) ks = minimum(ks_ref, ones(shape)) # Ke evaporation reduction coefficient; stage 1 evaporation fsa = where(isnan((rew - drew) / (KE_MAX * etrs)), zeros(shape), (rew - drew) / (KE_MAX * etrs)) fsb = minimum(fsa, ones(shape)) fs1 = maximum(fsb, zeros(shape)) ke = where(drew < rew, minimum((fs1 + (1 - fs1) * kr) * (kc_max - ks * kcb), few * kc_max), zeros(shape)) transp = (ks * kcb) * etrs et_init = (ks * kcb + ke) * etrs eta = maximum(et_init, zeros(shape)) evap_init = ke * etrs evap_min = maximum(evap_init, zeros(shape)) evap = minimum(evap_min, kc_max) # Load temp, find swe, melt, and precipitation, load Ksat # Use SNOTEL data for precip and temps: # df_snow : (stel_date, stel_snow, stel_precip, stel_tobs, stel_tmax, stel_tmin, stel_tavg, stel_snwd) snow_fall = where(mid_temp <= 0.0, ppt, zeros(shape)) rain = where(mid_temp >= 0.0, ppt, zeros(shape)) pA = a a = where(snow_fall > 3.0, ones(shape) * a_max, a) a = where(snow_fall <= 3.0, a_min + (pA - a_min) * exp(-0.12), a) a = where(snow_fall == 0.0, a_min + (pA - a_min) * exp(-0.05), a) a = where(a < a_min, a_min, a) swe += snow_fall mlt_init = maximum(((1 - a) * rg * 0.2) + (mid_temp - 1.8) * 11.0, zeros(shape)) # use calibrate coefficients mlt = minimum(swe, mlt_init) swe -= mlt # Find depletions pDr = dr pDe = de pDrew = drew watr = rain + mlt deps = dr + de + drew ro = zeros(shape) ro = where(watr > ksat + deps, watr - ksat - deps, ro) ro = maximum(ro, zeros(shape)) dp_r = zeros(shape) id1 = where(watr > deps, ones(shape), zeros(shape)) id2 = where(ksat > watr - deps, ones(shape), zeros(shape)) dp_r = where(id1 + id2 > 1.99, maximum(watr - deps, zeros(shape)), dp_r) dp_r = where(watr > ksat + deps, ksat, dp_r) dp_r = maximum(dp_r, zeros(shape)) drew_1 = minimum((pDrew + ro + (evap - (rain + mlt))), rew) drew = maximum(drew_1, zeros(shape)) diff = maximum(pDrew - drew, zeros(shape)) de_1 = minimum((pDe + (evap - (rain + mlt - diff))), tew) de = maximum(de_1, zeros(shape)) diff = maximum(((pDrew - drew) + (pDe - de)), zeros(shape)) dr_1 = minimum((pDr + ((transp + dp_r) - (rain + mlt - diff))), taw) dr = maximum(dr_1, zeros(shape)) # Create cumulative rasters to show net over entire run infil += dp_r infil = maximum(infil, zeros(shape)) prev_et = et ref_et += etrs et = et + evap + transp et_ind = et / ref_et et = where(isnan(et) == True, prev_et, et) et = where(et > ref_et, ref_et / 2., et) et = maximum(et, ones(shape) * 0.001) precip = precip + rain + snow_fall precip = maximum(precip, zeros(shape)) runoff += ro runoff = maximum(runoff, zeros(shape)) snow_ras = swe + snow_fall - mlt snow_ras = maximum(snow_ras, zeros(shape)) tot_snow += snow_fall mo_date = calendar.monthrange(year, month) if day == mo_date[1]: infil_mo = infil - p_mo_infil infil_mo = maximum(infil_mo, zeros(shape)) ref_et_mo = etrs - p_mo_etrs et_mo = et - p_mo_et et_mo = where(isnan(et_mo) == True, p_mo_et, et_mo) et_mo = where(et_mo > ref_et, ref_et / 2., et_mo) et_mo = maximum(et_mo, ones(shape) * 0.001) precip_mo = precip - p_mo_precip precip_mo = maximum(precip_mo, zeros(shape)) runoff_mo = ro - p_mo_ro runoff_mo = maximum(runoff_mo, zeros(shape)) snow_ras_mo = swe snow_ras_mo = maximum(snow_ras_mo, zeros(shape)) deps_mo = drew + de + dr delta_s_mo = p_mo_deps - deps_mo outputs = (('infil', infil_mo), ('et', et_mo), ('precip', precip_mo), ('runoff', runoff_mo), ('snow_ras', snow_ras_mo), ('delta_s_mo', delta_s_mo), ('deps_mo', deps_mo)) self.save_month_step(outputs, month, year) p_mo_et = et p_mo_precip = precip p_mo_ro = ro p_mo_deps = deps_mo p_mo_infil = infil p_mo_etrs = etrs if day == 31 and month == 12: infil_yr = infil - p_yr_infil infil_yr = maximum(infil_yr, zeros(shape)) ref_et_yr = etrs - p_yr_etrs et_yr = et - p_yr_et et_yr = where(isnan(et_yr) == True, p_yr_et, et_yr) et_yr = where(et_yr > ref_et, ref_et / 2., et_yr) et_yr = maximum(et_yr, ones(shape) * 0.001) precip_yr = precip - p_yr_precip precip_yr = maximum(precip_yr, zeros(shape)) runoff_yr = ro - p_yr_ro runoff_yr = maximum(runoff_yr, zeros(shape)) snow_ras_yr = swe snow_ras_yr = maximum(snow_ras_yr, zeros(shape)) deps_yr = drew + de + dr delta_s_yr = p_yr_deps - deps_yr outputs = (('infil', infil_yr), ('et', et_yr), ('precip', precip_yr), ('runoff', runoff_yr), ('snow_ras', snow_ras_yr), ('delta_s_yr', delta_s_yr), ('deps_yr', deps_yr)) p_yr_et = et p_yr_precip = precip p_yr_ro = ro p_yr_deps = deps_yr # this was originally p_mo_deps = deps_yr im assuming this is a typo p_yr_infil = infil p_yr_etrs = etrs self.save_year_step(outputs, month, year) # Check MASS BALANCE for the love of WATER!!! mass = rain + mlt - (ro + transp + evap + dp_r + ((pDr - dr) + (pDe - de) + (pDrew - drew))) tot_mass += abs(mass) cum_mass += mass plt_day[i] = dday plt_rain[i] = rain[S, E] plt_eta[i] = eta[S, E] plt_snow_fall[i] = snow_fall[S, E] plt_ro[i] = ro[S, E] plt_dr[i] = dr[S, E] plt_de[i] = de[S, E] plt_drew[i] = drew[S, E] plt_temp[i] = mid_temp[S, E] plt_dp_r[i] = dp_r[S, E] plt_ks[i] = ks[S, E] plt_pdr[i] = pDr[S, E] plt_etrs[i] = etrs[S, E] plt_kcb[i] = kcb[S, E] plt_ppt[i] = ppt[S, E] plt_ke[i] = ke[S, E] plt_kr[i] = kr[S, E] plt_mlt[i] = mlt[S, E] plt_swe[i] = swe[S, E] plt_tempm[i] = max_temp[S, E] plt_fs1[i] = fs1[S, E] plt_mass[i] = mass[S, E]
def run_model(self): """ Run the model :return: """ shape = self._shape tew = self._tew taw = self._taw start_time = datetime.now() pkcb = zeros(shape) swe = zeros(shape) tot_snow = zeros(shape) tot_mass = zeros(shape) cum_mass = zeros(shape) ref_et = zeros(shape) a_min = ones(shape) * 0.45 a_max = ones(shape) * 0.90 a = a_max pA = a_min days = list( rrule.rrule(rrule.DAILY, dtstart=self._start, until=self._end)) nsteps = len(days) plt_day = zeros(nsteps) plt_rain = zeros(nsteps) plt_eta = zeros(nsteps) plt_snow_fall = zeros(nsteps) plt_ro = zeros(nsteps) plt_dr = zeros(nsteps) plt_de = zeros(nsteps) plt_drew = zeros(nsteps) plt_temp = zeros(nsteps) plt_dp_r = zeros(nsteps) plt_ks = zeros(nsteps) plt_pdr = zeros(nsteps) plt_etrs = zeros(nsteps) plt_kcb = zeros(nsteps) plt_ppt = zeros(nsteps) plt_ke = zeros(nsteps) plt_kr = zeros(nsteps) plt_mlt = zeros(nsteps) plt_swe = zeros(nsteps) plt_tempm = zeros(nsteps) plt_fs1 = zeros(nsteps) plt_mass = zeros(nsteps) p_mo_et = zeros(shape) p_mo_precip = zeros(shape) p_mo_ro = zeros(shape) p_mo_deps = self._dr + self._de + self._drew p_mo_infil = zeros(shape) p_mo_etrs = zeros(shape) p_yr_et = zeros(shape) p_yr_precip = zeros(shape) p_yr_ro = zeros(shape) p_yr_deps = self._dr + self._de + self._drew p_yr_infil = zeros(shape) p_yr_etrs = zeros(shape) start_month = self._start_month end_month = self._end_month for i, dday in enumerate(days): if i > 0: pkcb = kcb doy = dday.timetuple().tm_yday year = dday.year month = dday.month day = dday.day msg = 'Time : {} day {}_{}'.format(datetime.now() - start_time, doy, year) logging.debug(msg) # -------------- kcb ------------------- if year == 2000: ndvi = self.calculate_ndvi_2000(doy) elif year == 2001: ndvi = self.calculate_ndvi_2001(doy) else: ndvi = self.calculate_ndvi(year, doy) kcb = ndvi * 1.25 kcb = maximum(kcb, self._min_val) kcb = where(isnan(kcb), pkcb, kcb) # -------------- PRISM ------------------- ppt, ppt_tom, max_temp, min_temp, mid_temp = self.load_prism(dday) # -------------- PM ------------------- # PM data to etrs name = os.path.join('PM{}'.format(year), 'PM_NM_{}_{:03n}'.format(year, doy)) etrs = tif_to_array(self._pm_data_root, name) etrs = maximum(etrs, self._min_val) name = os.path.join('PM{}'.format(year), 'RLIN_NM_{}_{:03n}'.format(year, doy)) rlin = tif_to_array(self._pm_data_root, name) rlin = maximum(rlin, zeros(shape)) name = os.path.join('rad{}'.format(year), 'RTOT_{}_{:03n}'.format(year, doy)) rg = tif_to_array(self._pm_data_root, name) rg = maximum(rg, zeros(shape)) if i == 0: # Total evaporable water is depth of water in the evaporable # soil layer, i.e., the water available to both stage 1 and 2 evaporation rew = minimum((2 + (tew / 3.)), 0.8 * tew) # del tew1, tew2 # you should have all these from previous model runs pDr = self._dr pDe = self._de pDrew = self._drew dr = self._dr de = self._de drew = self._drew nom = 2 if start_month <= doy <= end_month else 6 ksat = self._ksat * nom / 24. kc_max_1 = kcb + 0.0001 min_val = ones(shape) * 0.0001 kc_max = maximum(min_val, kc_max_1) self._nlcd_plt_hgt = self._nlcd_plt_hgt * 0.5 + 1 numr = maximum(kcb - self._kc_min, min_val * 10) denom = maximum((kc_max - self._kc_min), min_val * 10) fcov_ref = (numr / denom)**self._nlcd_plt_hgt fcov_min = minimum(fcov_ref, ones(shape)) fcov = maximum(fcov_min, min_val * 10) few = maximum(1 - fcov, 0.01) # exposed ground pKr = kr kr = minimum(((tew - de) / (tew - rew)), ones(shape)) kr = where(isnan(kr), pKr, kr) pKs = ks ks_ref = where(((taw - pDr) / (0.6 * taw)) < zeros(shape), ones(shape) * 0.001, ((taw - pDr) / (0.6 * taw))) ks_ref = where(isnan(ks), pKs, ks_ref) ks = minimum(ks_ref, ones(shape)) # Ke evaporation reduction coefficient; stage 1 evaporation fsa = where(isnan((rew - drew) / (KE_MAX * etrs)), zeros(shape), (rew - drew) / (KE_MAX * etrs)) fsb = minimum(fsa, ones(shape)) fs1 = maximum(fsb, zeros(shape)) ke = where( drew < rew, minimum((fs1 + (1 - fs1) * kr) * (kc_max - ks * kcb), few * kc_max), zeros(shape)) transp = (ks * kcb) * etrs et_init = (ks * kcb + ke) * etrs eta = maximum(et_init, zeros(shape)) evap_init = ke * etrs evap_min = maximum(evap_init, zeros(shape)) evap = minimum(evap_min, kc_max) # Load temp, find swe, melt, and precipitation, load Ksat # Use SNOTEL data for precip and temps: # df_snow : (stel_date, stel_snow, stel_precip, stel_tobs, stel_tmax, stel_tmin, stel_tavg, stel_snwd) snow_fall = where(mid_temp <= 0.0, ppt, zeros(shape)) rain = where(mid_temp >= 0.0, ppt, zeros(shape)) pA = a a = where(snow_fall > 3.0, ones(shape) * a_max, a) a = where(snow_fall <= 3.0, a_min + (pA - a_min) * exp(-0.12), a) a = where(snow_fall == 0.0, a_min + (pA - a_min) * exp(-0.05), a) a = where(a < a_min, a_min, a) swe += snow_fall mlt_init = maximum(((1 - a) * rg * 0.2) + (mid_temp - 1.8) * 11.0, zeros(shape)) # use calibrate coefficients mlt = minimum(swe, mlt_init) swe -= mlt # Find depletions pDr = dr pDe = de pDrew = drew watr = rain + mlt deps = dr + de + drew ro = zeros(shape) ro = where(watr > ksat + deps, watr - ksat - deps, ro) ro = maximum(ro, zeros(shape)) dp_r = zeros(shape) id1 = where(watr > deps, ones(shape), zeros(shape)) id2 = where(ksat > watr - deps, ones(shape), zeros(shape)) dp_r = where(id1 + id2 > 1.99, maximum(watr - deps, zeros(shape)), dp_r) dp_r = where(watr > ksat + deps, ksat, dp_r) dp_r = maximum(dp_r, zeros(shape)) drew_1 = minimum((pDrew + ro + (evap - (rain + mlt))), rew) drew = maximum(drew_1, zeros(shape)) diff = maximum(pDrew - drew, zeros(shape)) de_1 = minimum((pDe + (evap - (rain + mlt - diff))), tew) de = maximum(de_1, zeros(shape)) diff = maximum(((pDrew - drew) + (pDe - de)), zeros(shape)) dr_1 = minimum((pDr + ((transp + dp_r) - (rain + mlt - diff))), taw) dr = maximum(dr_1, zeros(shape)) # Create cumulative rasters to show net over entire run infil += dp_r infil = maximum(infil, zeros(shape)) prev_et = et ref_et += etrs et = et + evap + transp et_ind = et / ref_et et = where(isnan(et) == True, prev_et, et) et = where(et > ref_et, ref_et / 2., et) et = maximum(et, ones(shape) * 0.001) precip = precip + rain + snow_fall precip = maximum(precip, zeros(shape)) runoff += ro runoff = maximum(runoff, zeros(shape)) snow_ras = swe + snow_fall - mlt snow_ras = maximum(snow_ras, zeros(shape)) tot_snow += snow_fall mo_date = calendar.monthrange(year, month) if day == mo_date[1]: infil_mo = infil - p_mo_infil infil_mo = maximum(infil_mo, zeros(shape)) ref_et_mo = etrs - p_mo_etrs et_mo = et - p_mo_et et_mo = where(isnan(et_mo) == True, p_mo_et, et_mo) et_mo = where(et_mo > ref_et, ref_et / 2., et_mo) et_mo = maximum(et_mo, ones(shape) * 0.001) precip_mo = precip - p_mo_precip precip_mo = maximum(precip_mo, zeros(shape)) runoff_mo = ro - p_mo_ro runoff_mo = maximum(runoff_mo, zeros(shape)) snow_ras_mo = swe snow_ras_mo = maximum(snow_ras_mo, zeros(shape)) deps_mo = drew + de + dr delta_s_mo = p_mo_deps - deps_mo outputs = (('infil', infil_mo), ('et', et_mo), ('precip', precip_mo), ('runoff', runoff_mo), ('snow_ras', snow_ras_mo), ('delta_s_mo', delta_s_mo), ('deps_mo', deps_mo)) self.save_month_step(outputs, month, year) p_mo_et = et p_mo_precip = precip p_mo_ro = ro p_mo_deps = deps_mo p_mo_infil = infil p_mo_etrs = etrs if day == 31 and month == 12: infil_yr = infil - p_yr_infil infil_yr = maximum(infil_yr, zeros(shape)) ref_et_yr = etrs - p_yr_etrs et_yr = et - p_yr_et et_yr = where(isnan(et_yr) == True, p_yr_et, et_yr) et_yr = where(et_yr > ref_et, ref_et / 2., et_yr) et_yr = maximum(et_yr, ones(shape) * 0.001) precip_yr = precip - p_yr_precip precip_yr = maximum(precip_yr, zeros(shape)) runoff_yr = ro - p_yr_ro runoff_yr = maximum(runoff_yr, zeros(shape)) snow_ras_yr = swe snow_ras_yr = maximum(snow_ras_yr, zeros(shape)) deps_yr = drew + de + dr delta_s_yr = p_yr_deps - deps_yr outputs = (('infil', infil_yr), ('et', et_yr), ('precip', precip_yr), ('runoff', runoff_yr), ('snow_ras', snow_ras_yr), ('delta_s_yr', delta_s_yr), ('deps_yr', deps_yr)) p_yr_et = et p_yr_precip = precip p_yr_ro = ro p_yr_deps = deps_yr # this was originally p_mo_deps = deps_yr im assuming this is a typo p_yr_infil = infil p_yr_etrs = etrs self.save_year_step(outputs, month, year) # Check MASS BALANCE for the love of WATER!!! mass = rain + mlt - (ro + transp + evap + dp_r + ((pDr - dr) + (pDe - de) + (pDrew - drew))) tot_mass += abs(mass) cum_mass += mass plt_day[i] = dday plt_rain[i] = rain[S, E] plt_eta[i] = eta[S, E] plt_snow_fall[i] = snow_fall[S, E] plt_ro[i] = ro[S, E] plt_dr[i] = dr[S, E] plt_de[i] = de[S, E] plt_drew[i] = drew[S, E] plt_temp[i] = mid_temp[S, E] plt_dp_r[i] = dp_r[S, E] plt_ks[i] = ks[S, E] plt_pdr[i] = pDr[S, E] plt_etrs[i] = etrs[S, E] plt_kcb[i] = kcb[S, E] plt_ppt[i] = ppt[S, E] plt_ke[i] = ke[S, E] plt_kr[i] = kr[S, E] plt_mlt[i] = mlt[S, E] plt_swe[i] = swe[S, E] plt_tempm[i] = max_temp[S, E] plt_fs1[i] = fs1[S, E] plt_mass[i] = mass[S, E]