Example #1
0
def rouge_filescores(hyp_path,ref_path):
    '''
    :param hyp_path: 实验结果文本
    :param ref_path: 标准
    :return: 实验结果文本相对于标准文本的分数
    '''
    files_rouge = rouge.FilesRouge(hyp_path, ref_path)
    scores = files_rouge.get_scores()
    return scores
Example #2
0
    def setUp(self):
        self.hyp_path = './tests/hyp.txt'
        self.ref_path = './tests/ref.txt'

        self.data_path = './tests/data.json'
        with open(self.data_path) as f:
            self.data = json.load(f)

        self.rouge = rouge.Rouge()
        self.files_rouge = rouge.FilesRouge()
Example #3
0
def rouge_filescores(hyp_path, ref_path):
    """
    :param hyp_path: 实验结果文本
    :param ref_path: 标准文本
    :return: 实验结果文本相对于标准文本的分数
     use the rouge matrix calculate
    """
    files_rouge = rouge.FilesRouge(hyp_path, ref_path)
    scores = files_rouge.get_scores()
    return scores
Example #4
0
    def setUp(self):
        self.hyp_path = 'predicted_sentences_task1_ref0_2.txt'
        self.ref_path = 'task1_ref0_2.txt'

        self.data_path = 'data2.json'
        with open(self.data_path) as f:
            self.data = json.load(f)

        self.rouge = rouge.Rouge()
        self.files_rouge = rouge.FilesRouge()
Example #5
0
def main():
    sys.setrecursionlimit(2000 * 500 + 1000)
    for model in [
            "ast_cleaned", "transformer_no_ast", "raw_python",
            "unprocessed_ast"
    ]:
        fr = rouge.FilesRouge("hyps/" + model + "_hyp.txt",
                              "refs/" + model + "_ref.test")
        print(model)
        print(json.dumps(fr.get_scores(avg=True), indent=2))
Example #6
0
def run_red(reference_fn: str, candidate_fn: str) -> ROUGEResults:
    r = rouge.FilesRouge(candidate_fn, reference_fn)
    scores = r.get_scores(avg=True)

    return {
        'rouge1': {
            'precision': scores['rouge-1']['p'],
            'recall': scores['rouge-1']['r'],
            'f1': scores['rouge-1']['f'],
        },
        'rouge2': {
            'precision': scores['rouge-2']['p'],
            'recall': scores['rouge-2']['r'],
            'f1': scores['rouge-2']['f'],
        },
        'rougeL': {
            'precision': scores['rouge-l']['p'],
            'recall': scores['rouge-l']['r'],
            'f1': scores['rouge-l']['f'],
        },
    }
Example #7
0
    os.makedirs(save_path)

pred_test_file_name = os.path.join(save_path,
                                   f'test_{pred_file_name_suffix}.txt')
ref_test_file_name = os.path.join(save_path,
                                  f'test_{ref_file_name_suffix}.txt')

if model_name == 'textrank':
    summarizer = GensimSummarizer(model_params, file_to_process,
                                  pred_test_file_name, ref_test_file_name,
                                  preprocessor)
    summarizer.summarize()
if model_name == 'first_sentence':
    summarizer = ExtractFirstFullSentence(model_params, file_to_process,
                                          pred_test_file_name,
                                          ref_test_file_name, preprocessor)
    summarizer.summarize()
else:
    raise NotImplementedError(f'Model {model_name} not yet implemented')

r = rouge.FilesRouge(pred_test_file_name, ref_test_file_name)

scores = r.get_scores(avg=True)

print(scores)
with open(os.path.join(save_path, 'scores.json'), 'w') as f:
    json.dump(scores, f, indent=2)

with open(os.path.join(save_path, 'config.json'), 'w') as f:
    json.dump(config, f, indent=2)
Example #8
0
# references = ['the quick brown fox jumped over the lazy dog', 'test']
# hypotheses = ['the fast brown fox jumped over the lazy dog', 'test']

references = [
    'Man on ocean beach flying several kites on windy day',
    'Two people standing next to a river holding surfboards', 'test'
]
hypotheses = [
    'a person on a beach flying a kite',
    'a man holding a surfboard on a beach', 'test'
]

rouge_eval = rouge.Rouge()

test_r_eval = rouge.FilesRouge("data/example/hyp.txt", "data/example/ref.txt")
b = test_r_eval.get_scores()
print(b)

scores_rouge_dict_list = rouge_eval.get_scores(hypotheses, references)
print(scores_rouge_dict_list)
rouge_1_scores = [0.0] * 3
rouge_2_scores = [0.0] * 3
rouge_l_scores = [0.0] * 3

for i, s in enumerate(scores_rouge_dict_list):
    if isinstance(s, dict):
        for metric, vals in s.items():
            print(metric)
            print(vals)
            if metric == 'rouge-1':
 def setUp(self):
     self.hyp_path = './hyp.txt'
     self.ref_path = './ref.txt'
     self.rouge = rouge.Rouge()
     self.files_rouge = rouge.FilesRouge(self.hyp_path, self.ref_path)