Example #1
0
def gen_proposals(boxes, bbox_deltas, bound, min_size=8):
    #    proposals=bbox_transform_inv(boxes,bbox_deltas)
    #    proposals[:,0]=np.maximum(0, proposals[:,0])
    #    proposals[:,1]=np.maximum(0, proposals[:,1])
    #    proposals[:,2]=np.minimum(bound[0], proposals[:,2])
    #    proposals[:,3]=np.minimum(bound[1], proposals[:,3])
    #
    #    return proposals
    proposals = bbox_transform_inv(boxes, bbox_deltas)
    proposals = np.hstack((proposals, boxes[:, -1].reshape(-1, 1)))

    proposals[:, 0] = np.maximum(0, proposals[:, 0])
    proposals[:, 1] = np.maximum(0, proposals[:, 1])
    proposals[:, 2] = np.minimum(bound[0], proposals[:, 2])
    proposals[:, 3] = np.minimum(bound[1], proposals[:, 3])

    ws = proposals[:, 2] - proposals[:, 0]
    hs = proposals[:, 3] - proposals[:, 1]

    keep = np.where(np.bitwise_and(ws >= min_size, hs >= min_size) == 1)[0]
    proposals_keep = proposals[keep]
    boxes_keep = boxes[keep]

    #    print(proposals[:30])
    assert len(
        keep) > 0, 'Anchors bbox_transform_inv have all rois of negative sides'

    return proposals_keep, boxes_keep
Example #2
0
    def gen_proposals(self, rpn_logits, rpn_bbox, anchors, batch_size):
        out_cls_softmax = F.softmax(rpn_logits, dim=1)
        out_cls_np = out_cls_softmax.cpu().data.numpy()[:, 1, :, :]
        out_cls_np = out_cls_np.reshape(batch_size, self.K, self.out_height,
                                        self.out_width).transpose(0, 2, 3,
                                                                  1).reshape(
                                                                      -1, 1)
        '''
        out_cls=rpn_logits.view(batch_size, 2*self.K, self.out_height, self.out_width).permute(0,2,3,1).contiguous().view(-1,2)
        out_cls_softmax=F.softmax(out_cls, dim=1)
        out_cls_np=out_cls_softmax.cpu().data.numpy()[:,1].reshape(-1,1)
        '''
        out_bbox_np = rpn_bbox.cpu().data.numpy().transpose(0, 2, 3,
                                                            1).reshape(-1, 4)
        tic = time()
        if cfg.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
            out_bbox_np = out_bbox_np * cfg.RPN_BBOX_STD_DEV

        bbox_pred = bbox_transform_inv(anchors, out_bbox_np)
        self.clip_boxes(bbox_pred, self.bound)
        toc = time()
        if DEBUG:
            print('--bbox transform costs {}s'.format(toc - tic))
        bbox_pred_with_cls = np.hstack((bbox_pred, out_cls_np))
        proposals_batch = np.split(bbox_pred_with_cls, batch_size, axis=0)

        all_proposals = []
        tic = time()
        for proposals in proposals_batch:
            '''
            x1,y1,x2,y2,_=np.split(proposals,5,axis=1)
            ws,hs=x2-x1+1,y2-y1+1
            inds=np.where(np.bitwise_and(ws>32,hs>32)==1)[0]
            proposals=proposals[inds]
            '''
            if cfg.NMS:
                order = np.argsort(proposals[:, -1])[::-1]
                proposals_order = proposals[
                    order[:cfg[cfg.PHASE].RPN_PRE_NMS_TOP_N]]
                pick = nms_cuda(proposals_order,
                                nms_thresh=cfg[cfg.PHASE].RPN_NMS_THRESH,
                                xyxy=True)

                if len(pick) == 0:
                    print('No pick in proposal nms')
                if cfg[cfg.PHASE].RPN_POST_NMS_TOP_N > 0 and len(pick) > cfg[
                        cfg.PHASE].RPN_POST_NMS_TOP_N:
                    pick = pick[:cfg[cfg.PHASE].RPN_POST_NMS_TOP_N]
                proposals_nms = proposals_order[pick]
            else:
                proposals_nms = proposals
            all_proposals.append(proposals_nms)
        toc = time()
        if DEBUG:
            print('--NMS costs {}s'.format(toc - tic))
        '''list of all proposals of each image sample'''
        return all_proposals
Example #3
0
    def gen_proposals(self, rpn_cls, rpn_bbox, anchors, batch_size):
        #        out_cls_softmax=self.rpn_cls_softmax(rpn_cls)
        out_cls_softmax = F.softmax(rpn_cls, dim=1)
        out_cls_np = out_cls_softmax.cpu().data.numpy()[:, 1, :, :]
        out_cls_np = out_cls_np.reshape(batch_size, self.K, self.out_size[1],
                                        self.out_size[0]).transpose(
                                            0, 2, 3, 1).reshape(-1, 1)
        out_bbox_np = rpn_bbox.cpu().data.numpy().transpose(0, 2, 3,
                                                            1).reshape(-1, 4)

        if cfg.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
            out_bbox_np = out_bbox_np * cfg.RPN_BBOX_STD_DEV

        if anchors.shape[0] != out_bbox_np.shape[0]:
            anchors = np.tile(anchors, (batch_size, 1))

        bbox_pred = U.bbox_transform_inv(anchors, out_bbox_np)
        self.clip_boxes(bbox_pred, self.bound)

        bbox_pred_with_cls = np.hstack((bbox_pred, out_cls_np))
        proposals_batch = np.split(bbox_pred_with_cls, batch_size, axis=0)

        all_proposals = []

        for proposals in proposals_batch:
            if cfg.NMS:
                order = np.argsort(proposals[:, -1])[::-1]
                proposals_order = proposals[
                    order[:cfg[cfg.PHASE].RPN_PRE_NMS_TOP_N]]
                #                pick=nms_cuda(proposals_order, nms_thresh=0.7, xyxy=True)
                pick = nms_cuda(proposals_order,
                                nms_thresh=cfg[cfg.PHASE].RPN_NMS_THRESH,
                                xyxy=True)

                if len(pick) == 0:
                    print('No pick in proposal nms')
                if cfg[cfg.PHASE].RPN_POST_NMS_TOP_N > 0 and len(pick) > cfg[
                        cfg.PHASE].RPN_POST_NMS_TOP_N:
                    pick = pick[:cfg[cfg.PHASE].RPN_POST_NMS_TOP_N]
                proposals_nms = proposals_order[pick]
                all_proposals.append(proposals_nms)
            else:
                all_proposals.append(proposals)
        '''list of all proposals of each box, not each frame'''
        return all_proposals
Example #4
0
def im_detect(image, anchors, model):
    im_w = model.im_width
    im_h = model.im_height

    h, w = image.shape[:2]
    image = cv2.resize(image, (im_w, im_h), interpolation=cv2.INTER_LINEAR)

    xscale = 1.0 * im_w / w
    yscale = 1.0 * im_h / h

    roidb = {}
    roidb['image'] = image[np.newaxis, :, :, :].astype(np.float32)
    if cfg.IMAGE_NORMALIZE:
        roidb['image'] -= roidb['image'].min()
        roidb['image'] /= roidb['image'].max()
        roidb['image'] = (roidb['image'] - 0.5) / 0.5
    else:
        roidb['image'] -= cfg.PIXEL_MEANS

    roidb['gt_boxes'] = None
    roidb['gt_classes'] = None
    roidb['bbox_overlaps'] = None
    roidb['anchors'] = anchors

    output_dict = model([roidb])

    frcnn_probs = output_dict['frcnn_probs'].cpu().data.numpy()
    frcnn_bbox = output_dict['frcnn_bbox'].cpu().data.numpy()

    proposals = output_dict['proposals']
    num_proposals_per_image = output_dict['num_proposals']

    print(num_proposals_per_image)
    print(frcnn_probs.shape)

    cls_bboxes = [[]]
    #    classes=np.argmax(frcnn_probs[:,1:], axis=1)+1
    #    max_probs=np.max(frcnn_probs[:,1:], axis=1)
    classes = np.argmax(frcnn_probs, axis=1)
    max_probs = np.max(frcnn_probs, axis=1)

    #    print(classes)

    #    bbox_pred=bbox_transform_inv(proposals, frcnn_bbox)

    for i in range(1, cfg.NUM_CLASSES):
        cls_inds = np.where(classes == i)[0]
        if cls_inds.size == 0:
            cls_bboxes.append([])
        else:
            cls_proposals = proposals[cls_inds]
            cls_frcnn_bbox = frcnn_bbox[cls_inds, 4 * i:4 * i + 4]

            if cfg.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
                cls_frcnn_bbox = cls_frcnn_bbox * cfg.BBOX_STD_DEV

            cls_bbox_pred = bbox_transform_inv(cls_proposals, cls_frcnn_bbox)
            cls_probs = max_probs[cls_inds]

            #            print(frcnn_probs[cls_inds])

            cls_bbox_pred = np.hstack((cls_bbox_pred, cls_probs.reshape(-1,
                                                                        1)))

            order = np.argsort(cls_probs)[::-1]
            bbox_order = cls_bbox_pred[order]

            pick = nms_cuda(bbox_order,
                            nms_thresh=cfg.TEST.NMS_THRESH,
                            xyxy=True)
            #            pick=pick[:600]

            bboxes = bbox_order[pick].reshape(-1, bbox_order.shape[1])

            print('Class {} has {} instances!'.format(CLASSES[i],
                                                      bboxes.shape[0]))
            cls_bboxes.append(bboxes)


#    print(len(proposals))
    return cls_bboxes, (xscale, yscale), proposals
Example #5
0
def get_track_output(output_dict, configs):
    K = configs['K']
    temp_boxes = configs['temp_boxes']
    search_boxes = configs['search_boxes']
    rpn_conv_size = configs['rpn_conv_size']
    raw_anchors = configs['raw_anchors']
    bound = configs['bound']

    track_rpn_logits = output_dict['track_rpn_logits']
    track_rpn_bbox = output_dict['track_rpn_bbox']

    num_targets = track_rpn_logits.shape[0]

    track_rpn_cls = F.softmax(track_rpn_logits, dim=1).cpu().data.numpy()
    track_rpn_cls = track_rpn_cls[:, 1, :, :].reshape(
        num_targets, K, rpn_conv_size,
        rpn_conv_size).transpose(0, 2, 3, 1).reshape(num_targets, -1)
    track_rpn_bbox = track_rpn_bbox.cpu().data.numpy().transpose(
        0, 2, 3, 1).reshape(num_targets, -1, 4)

    bboxes_list = []
    anchors_list = []

    for i in range(num_targets):
        temp_box = temp_boxes[i]
        temp_cx = 0.5 * (temp_box[0] + temp_box[2])
        temp_cy = 0.5 * (temp_box[1] + temp_box[3])

        rpn_cls = track_rpn_cls[i]
        rpn_bbox = track_rpn_bbox[i]
        #        print(rpn_cls.size)
        #        print(rpn_bbox.shape[0])
        order = np.argsort(rpn_cls)[::-1]

        _anchors = G.gen_region_anchors(raw_anchors,
                                        search_boxes[i].reshape(1, -1),
                                        bound,
                                        K,
                                        size=(rpn_conv_size, rpn_conv_size))[0]

        top = 1
        #        print(rpn_cls[order[:top]])

        fg_anchors = _anchors[order[:top]]
        fg_rpn_bbox = rpn_bbox[order[:top]]

        if cfg.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
            fg_rpn_bbox *= cfg.BBOX_STD_DEV

        bboxes = bbox_transform_inv(fg_anchors, fg_rpn_bbox)
        '''
        best_id=select_proposals_cosine(temp_boxes[i], bboxes, rpn_cls[order[:top]], order[:top], rpn_conv_size, K)
        anchors_list.append(fg_anchors[best_id][np.newaxis,:])
        bboxes_list.append(bboxes[best_id][np.newaxis,:])
        '''

        if np.max(rpn_cls[order[:top]]) < cfg.TRACK_SCORE_THRESH:
            bboxes_list.append([])
        else:
            cx = 0.5 * (bboxes[:, 0] + bboxes[:, 2])
            cy = 0.5 * (bboxes[:, 1] + bboxes[:, 3])
            dist_cx = np.abs(cx - temp_cx)
            dist_cy = np.abs(cy - temp_cy)

            fg_inds = np.where(
                np.bitwise_and(dist_cx < cfg.TRACK_MAX_DIST,
                               dist_cy < cfg.TRACK_MAX_DIST) == 1)[0]
            bboxes_list.append(bboxes[fg_inds])


#        bboxes_list.append(bboxes)
        anchors_list.append(fg_anchors)
    ret = {}
    ret['bboxes_list'] = bboxes_list
    ret['anchors_list'] = anchors_list
    return ret
Example #6
0
def get_detect_output(output_dict, batch_size=-1):
    frcnn_probs = output_dict['frcnn_probs'].cpu().data.numpy()
    frcnn_bbox = output_dict['frcnn_bbox'].cpu().data.numpy()

    proposals = output_dict['proposals']
    num_proposals_per_image = output_dict['num_proposals']

    #    print(num_proposals_per_image)
    #    print(frcnn_probs.shape)

    outputs = []
    B = len(num_proposals_per_image)
    if batch_size > 0:
        B = batch_size
    start = 0
    for b in range(B):
        ret = {}
        cls_bboxes = [[]]
        frcnn_probs_this_sample = frcnn_probs[start:start +
                                              num_proposals_per_image[b]]
        frcnn_bbox_this_sample = frcnn_bbox[start:start +
                                            num_proposals_per_image[b]]
        proposals_this_sample = proposals[start:start +
                                          num_proposals_per_image[b]]

        classes = np.argmax(frcnn_probs_this_sample, axis=1)
        max_probs = np.max(frcnn_probs_this_sample, axis=1)
        #        print(classes)
        for i in range(1, cfg.NUM_CLASSES):
            cls_inds = np.where(classes == i)[0]
            if cls_inds.size == 0:
                cls_bboxes.append(np.array([]))
            else:
                cls_proposals = proposals_this_sample[cls_inds]
                cls_frcnn_bbox = frcnn_bbox_this_sample[cls_inds,
                                                        4 * i:4 * i + 4]

                if cfg.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
                    cls_frcnn_bbox = cls_frcnn_bbox * cfg.BBOX_STD_DEV

                cls_bbox_pred = bbox_transform_inv(cls_proposals,
                                                   cls_frcnn_bbox)
                cls_probs = max_probs[cls_inds]

                #                print(frcnn_probs_this_sample[cls_inds])
                #
                cls_bbox_pred = np.hstack(
                    (cls_bbox_pred, cls_probs.reshape(-1, 1)))

                order = np.argsort(cls_probs)[::-1]
                bbox_order = cls_bbox_pred[order]

                #                pick=nms_cuda(bbox_order, nms_thresh=0.7, xyxy=True)
                pick = nms_cuda(bbox_order,
                                nms_thresh=cfg[cfg.PHASE].NMS_THRESH,
                                xyxy=True)
                pick = pick[:600]

                bboxes = bbox_order[pick].reshape(-1, bbox_order.shape[1])
                nms_scores = bboxes[:, -1]
                bboxes = bboxes[np.where(
                    nms_scores > cfg.DET_SCORE_THRESH)[0], :]
                if bboxes.shape[0] > 0:
                    print('Class {} has {} instances!'.format(
                        CLASSES[i], bboxes.shape[0]))
                cls_bboxes.append(bboxes)

        ret['cls_bboxes'] = cls_bboxes
        ret['proposals'] = proposals_this_sample
        outputs.append(ret)

        start += num_proposals_per_image[b]
    return outputs