def main(argv=None): """script main. parses command line options in sys.argv, unless *argv* is given. """ if argv is None: argv = sys.argv parser = E.OptionParser( version="%prog version: $Id: r_compare_distributions.py 2782 2009-09-10 11:40:29Z andreas $") parser.add_option("-m", "--method", dest="method", type="choice", help="method to use: ks=Kolmogorov-Smirnov, mwu=Mann-WhitneyU, shapiro=Shapiro-Wilk, paired-mwu=paired Mann-WhitneyU, paired-t=paired t-test [default=%default]", choices=("ks", "mwu", "shapiro", "paired-mwu", "paired-t")) parser.add_option("-a", "--hardcopy", dest="hardcopy", type="string", help="write hardcopy to file.", metavar="FILE") parser.add_option("-1", "--infile1", dest="filename_input1", type="string", help="input filename for distribution 1.") parser.add_option("-2", "--infile2", dest="filename_input2", type="string", help="input filename for distribution 2.") parser.add_option("--plot-legend", dest="legend", type="string", help="legend for histograms.""") parser.add_option("-f", "--infile-map", dest="filename_input_map", type="string", help="input filename for mapping categories to values.") parser.add_option("-n", "--norm-test", dest="norm_test", action="store_true", help="""test if a set of values is normally distributed. Mean and variance are calculated from the data.""") parser.add_option("-b", "--num-bins", dest="num_bins", type="int", help="""number of bins (for plotting purposes only).""") parser.add_option("--bin-size", dest="bin_size", type="float", help="""bin size for plot.""") parser.add_option("--min-value", dest="min_value", type="float", help="""minimum_value for plot.""") parser.add_option("--max-value", dest="max_value", type="float", help="""maximum_value for plot.""") parser.add_option("--skip-plot", dest="plot", action="store_false", help="""skipping plotting.""") parser.add_option("--header-names", dest="header", type="string", help="""header of value column [default=%default].""") parser.add_option("--title", dest="title", type="string", help="""plot title [default=%default].""") parser.set_defaults( method="ks", filename_input1=None, filename_input2=None, filename_input_map=None, legend=None, norm_test=False, num_bins=0, legend_range="2,2", bin_size=None, min_value=None, plot=True, header="value", title=None, ) (options, args) = E.Start(parser, add_pipe_options=True) kwargs = {} xargs = [] for arg in args: if "=" in arg: key, value = arg.split("=") kwargs[key] = value else: xargs.append(arg) if options.legend: options.legend = options.legend.split(",") map_category2value = {} if options.filename_input_map: map_category2value = IOTools.ReadMap(open(options.filename_input_map, "r"), map_functions=(str, float)) f = str else: f = float if options.filename_input1: infile1 = IOTools.openFile(options.filename_input1, "r") else: infile1 = sys.stdin values1, errors1 = IOTools.ReadList(infile1, map_function=f, map_category=map_category2value) if options.filename_input1: infile1.close() if errors1 and options.loglevel >= 3: options.stdlog.write("# errors in input1: %s\n" % ";".join(map(str, errors1))) if options.norm_test: mean = R.mean(values1) stddev = R.sd(values1) options.stdlog.write("# creating %i samples from normal distribution with mean %f and stddev %f\n" % ( len(values1), mean, stddev)) values2 = R.rnorm(len(values1), mean, stddev) errors2 = () else: values2, errors2 = IOTools.ReadList(open(options.filename_input2, "r"), map_function=f, map_category=map_category2value) if errors2 and options.loglevel >= 3: options.stdlog.write("# errors in input2: %s\n" % ";".join(map(str, errors2))) if options.loglevel >= 1: options.stdlog.write("# ninput1=%i, nerrors1=%i, ninput2=%i, nerrors2=%i\n" % (len(values1), len(errors1), len(values2), len(errors2))) if options.method in ("paired-mwu", "paired-t"): if len(values1) != len(values2): raise ValueError( "number of values must be equal for paired tests.") if options.hardcopy: R.png(options.hardcopy, width=1024, height=768) if options.method == "ks": result = R.ks_test(values1, values2, *xargs, **kwargs) elif options.method == "mwu": result = R.wilcox_test( values1, values2, paired=False, correct=True, *xargs, **kwargs) elif options.method == "paired-mwu": result = R.wilcox_test( values1, values2, paired=True, correct=True, *xargs, **kwargs) elif options.method == "paired-t": result = R.t_test(values1, values2, paired=True, *xargs, **kwargs) elif options.method == "shapiro": if len(values1) > 5000: E.warn( "shapiro-wilk test only accepts < 5000 values, a random sample has been created.") values1 = random.sample(values1, 5000) result = R.shapiro_test(values1, *xargs, **kwargs) if options.plot: R.assign("v1", values1) R.assign("v2", values2) if options.title: # set the size of the outer margins - the title needs to be added at the end # after plots have been created R.par(oma=R.c(0, 0, 4, 0)) R.layout(R.matrix((1, 2, 3, 4), 2, 2, byrow=True)) R.boxplot(values1, values2, col=('white', 'red'), main="Boxplot") R("""qqplot( v1, v2, main ='Quantile-quantile plot' ); lines( c(0,1), c(0,1) );""") # compute breaks: min_value = min(min(values1), min(values2)) if options.min_value is not None: min_value = min(min_value, options.min_value) max_value = max(max(values1), max(values2)) if options.max_value is not None: max_value = max(max_value, options.max_value) extra_options = "" if options.num_bins and not (options.min_value or options.max_value): extra_options += ", breaks=%i" % options.num_bins elif options.num_bins and (options.min_value or options.max_value): bin_size = float((max_value - min_value)) / (options.num_bins + 1) breaks = [ min_value + x * bin_size for x in range(options.num_bins)] extra_options += ", breaks=c(%s)" % ",".join(map(str, breaks)) elif options.bin_size is not None: num_bins = int(((max_value - min_value) / options.bin_size)) + 1 breaks = [ min_value + x * options.bin_size for x in range(num_bins + 1)] extra_options += ", breaks=c(%s)" % ",".join(map(str, breaks)) R("""h1 <- hist( v1, freq=FALSE, density=20, main='Relative frequency histogram' %s)""" % extra_options) R("""h2 <- hist( v2, freq=FALSE, add=TRUE, density=20, col='red', offset=0.5, angle=135 %s)""" % extra_options) if options.legend: R("""legend( ( max(c(h1$breaks[-1], h2$breaks[-1])) - min(c(h1$breaks[1], h2$breaks[1]) ) ) / 2, max( max(h1$density), max(h2$density)) / 2, c('%s'), fill=c('white','red'))""" % ( "','".join(options.legend))) R("""h1 <- hist( v1, freq=TRUE, density=20, main='Absolute frequency histogram' %s)""" % extra_options) R("""h2 <- hist( v2, freq=TRUE, add=TRUE, density=20, col='red', offset=0.5, angle=135 %s )""" % extra_options) if options.legend: R("""legend( ( max(c(h1$breaks[-1], h2$breaks[-1])) - min(c(h1$breaks[1], h2$breaks[1]) ) ) / 2, max( max(h1$counts), max(h2$counts)) / 2, c('%s'), fill=c('white','red'))""" % ( "','".join(options.legend))) if options.title: R.mtext(options.title, 3, outer=True, line=1, cex=1.5) if options.loglevel >= 1: options.stdout.write("## Results for %s\n" % result['method']) options.stdout.write("%s\t%s\n" % ("key", options.header)) for key in list(result.keys()): if key == "data.name": continue options.stdout.write("\t".join((key, str(result[key]))) + "\n") stat = Stats.Summary(values1) for key, value in list(stat.items()): options.stdout.write("%s1\t%s\n" % (str(key), str(value))) stat = Stats.Summary(values2) for key, value in list(stat.items()): options.stdout.write("%s2\t%s\n" % (str(key), str(value))) if options.plot: if options.hardcopy: R.dev_off() E.Stop()
# -*- coding: utf-8 -*- from rpy2.robjects import r from rpy2.robjects import IntVector x = IntVector(range(9)) y = IntVector(range(9)) import ipdb; ipdb.set_trace() r.png('figura1.png') r.plot(x, y) r['dev.off']() r.png('figura2.jpeg') r.plot(x, y, xlab='x', ylab='y', main='Minha plotagem', type='l') r['dev.off']() r.png('figura3.pdf') normal = r.rnorm(500, 0, 1) r.hist(normal) r['dev.off']()
def main(argv=None): """script main. parses command line options in sys.argv, unless *argv* is given. """ if argv is None: argv = sys.argv parser = E.OptionParser( version= "%prog version: $Id: r_compare_distributions.py 2782 2009-09-10 11:40:29Z andreas $" ) parser.add_option( "-m", "--method", dest="method", type="choice", help= "method to use: ks=Kolmogorov-Smirnov, mwu=Mann-WhitneyU, shapiro=Shapiro-Wilk, paired-mwu=paired Mann-WhitneyU, paired-t=paired t-test [default=%default]", choices=("ks", "mwu", "shapiro", "paired-mwu", "paired-t")) parser.add_option("-a", "--hardcopy", dest="hardcopy", type="string", help="write hardcopy to file.", metavar="FILE") parser.add_option("-1", "--infile1", dest="filename_input1", type="string", help="input filename for distribution 1.") parser.add_option("-2", "--infile2", dest="filename_input2", type="string", help="input filename for distribution 2.") parser.add_option("--plot-legend", dest="legend", type="string", help="legend for histograms." "") parser.add_option("-f", "--infile-map", dest="filename_input_map", type="string", help="input filename for mapping categories to values.") parser.add_option( "-n", "--norm-test", dest="norm_test", action="store_true", help= """test if a set of values is normally distributed. Mean and variance are calculated from the data.""") parser.add_option("-b", "--num-bins", dest="num_bins", type="int", help="""number of bins (for plotting purposes only).""") parser.add_option("--bin-size", dest="bin_size", type="float", help="""bin size for plot.""") parser.add_option("--min-value", dest="min_value", type="float", help="""minimum_value for plot.""") parser.add_option("--max-value", dest="max_value", type="float", help="""maximum_value for plot.""") parser.add_option("--skip-plot", dest="plot", action="store_false", help="""skipping plotting.""") parser.add_option("--header-names", dest="header", type="string", help="""header of value column [default=%default].""") parser.add_option("--title", dest="title", type="string", help="""plot title [default=%default].""") parser.set_defaults( method="ks", filename_input1=None, filename_input2=None, filename_input_map=None, legend=None, norm_test=False, num_bins=0, legend_range="2,2", bin_size=None, min_value=None, plot=True, header="value", title=None, ) (options, args) = E.Start(parser, add_pipe_options=True) kwargs = {} xargs = [] for arg in args: if "=" in arg: key, value = arg.split("=") kwargs[key] = value else: xargs.append(arg) if options.legend: options.legend = options.legend.split(",") map_category2value = {} if options.filename_input_map: map_category2value = IOTools.ReadMap(open(options.filename_input_map, "r"), map_functions=(str, float)) f = str else: f = float if options.filename_input1: infile1 = IOTools.openFile(options.filename_input1, "r") else: infile1 = sys.stdin values1, errors1 = IOTools.ReadList(infile1, map_function=f, map_category=map_category2value) if options.filename_input1: infile1.close() if errors1 and options.loglevel >= 3: options.stdlog.write("# errors in input1: %s\n" % ";".join(map(str, errors1))) if options.norm_test: mean = R.mean(values1) stddev = R.sd(values1) options.stdlog.write( "# creating %i samples from normal distribution with mean %f and stddev %f\n" % (len(values1), mean, stddev)) values2 = R.rnorm(len(values1), mean, stddev) errors2 = () else: values2, errors2 = IOTools.ReadList(open(options.filename_input2, "r"), map_function=f, map_category=map_category2value) if errors2 and options.loglevel >= 3: options.stdlog.write("# errors in input2: %s\n" % ";".join(map(str, errors2))) if options.loglevel >= 1: options.stdlog.write( "# ninput1=%i, nerrors1=%i, ninput2=%i, nerrors2=%i\n" % (len(values1), len(errors1), len(values2), len(errors2))) if options.method in ("paired-mwu", "paired-t"): if len(values1) != len(values2): raise ValueError( "number of values must be equal for paired tests.") if options.hardcopy: R.png(options.hardcopy, width=1024, height=768) if options.method == "ks": result = R.ks_test(values1, values2, *xargs, **kwargs) elif options.method == "mwu": result = R.wilcox_test(values1, values2, paired=False, correct=True, *xargs, **kwargs) elif options.method == "paired-mwu": result = R.wilcox_test(values1, values2, paired=True, correct=True, *xargs, **kwargs) elif options.method == "paired-t": result = R.t_test(values1, values2, paired=True, *xargs, **kwargs) elif options.method == "shapiro": if len(values1) > 5000: E.warn( "shapiro-wilk test only accepts < 5000 values, a random sample has been created." ) values1 = random.sample(values1, 5000) result = R.shapiro_test(values1, *xargs, **kwargs) if options.plot: R.assign("v1", values1) R.assign("v2", values2) if options.title: # set the size of the outer margins - the title needs to be added at the end # after plots have been created R.par(oma=R.c(0, 0, 4, 0)) R.layout(R.matrix((1, 2, 3, 4), 2, 2, byrow=True)) R.boxplot(values1, values2, col=('white', 'red'), main="Boxplot") R("""qqplot( v1, v2, main ='Quantile-quantile plot' ); lines( c(0,1), c(0,1) );""" ) # compute breaks: min_value = min(min(values1), min(values2)) if options.min_value is not None: min_value = min(min_value, options.min_value) max_value = max(max(values1), max(values2)) if options.max_value is not None: max_value = max(max_value, options.max_value) extra_options = "" if options.num_bins and not (options.min_value or options.max_value): extra_options += ", breaks=%i" % options.num_bins elif options.num_bins and (options.min_value or options.max_value): bin_size = float((max_value - min_value)) / (options.num_bins + 1) breaks = [ min_value + x * bin_size for x in range(options.num_bins) ] extra_options += ", breaks=c(%s)" % ",".join(map(str, breaks)) elif options.bin_size is not None: num_bins = int(((max_value - min_value) / options.bin_size)) + 1 breaks = [ min_value + x * options.bin_size for x in range(num_bins + 1) ] extra_options += ", breaks=c(%s)" % ",".join(map(str, breaks)) R("""h1 <- hist( v1, freq=FALSE, density=20, main='Relative frequency histogram' %s)""" % extra_options) R("""h2 <- hist( v2, freq=FALSE, add=TRUE, density=20, col='red', offset=0.5, angle=135 %s)""" % extra_options) if options.legend: R("""legend( ( max(c(h1$breaks[-1], h2$breaks[-1])) - min(c(h1$breaks[1], h2$breaks[1]) ) ) / 2, max( max(h1$density), max(h2$density)) / 2, c('%s'), fill=c('white','red'))""" % ("','".join(options.legend))) R("""h1 <- hist( v1, freq=TRUE, density=20, main='Absolute frequency histogram' %s)""" % extra_options) R("""h2 <- hist( v2, freq=TRUE, add=TRUE, density=20, col='red', offset=0.5, angle=135 %s )""" % extra_options) if options.legend: R("""legend( ( max(c(h1$breaks[-1], h2$breaks[-1])) - min(c(h1$breaks[1], h2$breaks[1]) ) ) / 2, max( max(h1$counts), max(h2$counts)) / 2, c('%s'), fill=c('white','red'))""" % ("','".join(options.legend))) if options.title: R.mtext(options.title, 3, outer=True, line=1, cex=1.5) if options.loglevel >= 1: options.stdout.write("## Results for %s\n" % result['method']) options.stdout.write("%s\t%s\n" % ("key", options.header)) for key in list(result.keys()): if key == "data.name": continue options.stdout.write("\t".join((key, str(result[key]))) + "\n") stat = Stats.Summary(values1) for key, value in list(stat.items()): options.stdout.write("%s1\t%s\n" % (str(key), str(value))) stat = Stats.Summary(values2) for key, value in list(stat.items()): options.stdout.write("%s2\t%s\n" % (str(key), str(value))) if options.plot: if options.hardcopy: R.dev_off() E.Stop()
# -*- coding: utf-8 -*- from rpy2.robjects import r from rpy2.robjects import IntVector x = IntVector(range(9)) y = IntVector(range(9)) import ipdb ipdb.set_trace() r.png('figura1.png') r.plot(x, y) r['dev.off']() r.png('figura2.jpeg') r.plot(x, y, xlab='x', ylab='y', main='Minha plotagem', type='l') r['dev.off']() r.png('figura3.pdf') normal = r.rnorm(500, 0, 1) r.hist(normal) r['dev.off']()