class CReivew: def __init__(self, dbinfo=ct.DB_INFO, redis_host=None): self.dbinfo = dbinfo self.logger = getLogger(__name__) self.tu_client = get_tushare_client() self.doc = CDoc() self.redis = create_redis_obj( ) if redis_host is None else create_redis_obj(redis_host) self.mysql_client = CMySQL(dbinfo, iredis=self.redis) self.margin_client = Margin(dbinfo=dbinfo, redis_host=redis_host) self.rstock_client = RIndexStock(dbinfo=dbinfo, redis_host=redis_host) self.sh_market_client = StockExchange(ct.SH_MARKET_SYMBOL) self.sz_market_client = StockExchange(ct.SZ_MARKET_SYMBOL) self.emotion_client = Emotion() def get_industry_data(self, cdate): ri = RIndexIndustryInfo() df = ri.get_k_data(cdate) if df.empty: return df df = df.reset_index(drop=True) df = df.sort_values(by='amount', ascending=False) df['money_change'] = (df['amount'] - df['preamount']) / 1e8 industry_info = IndustryInfo.get() df = pd.merge(df, industry_info, how='left', on=['code']) return df def get_index_data(self, cdate): df = pd.DataFrame() for code, name in ct.TDX_INDEX_DICT.items(): data = CIndex(code).get_k_data(cdate) data['name'] = name data['code'] = code df = df.append(data) df = df.reset_index(drop=True) return df def get_market_data(self, market, start_date, end_date): if market == ct.SH_MARKET_SYMBOL: df = self.sh_market_client.get_k_data_in_range( start_date, end_date) df = df.loc[df.name == '上海市场'] else: df = self.sz_market_client.get_k_data_in_range( start_date, end_date) df = df.loc[df.name == '深圳市场'] df = df.round(2) df = df.drop_duplicates() df = df.reset_index(drop=True) df = df.sort_values(by='date', ascending=True) df.negotiable_value = (df.negotiable_value / 2).astype(int) return df def get_rzrq_info(self, market, start_date, end_date): df = self.margin_client.get_k_data_in_range(start_date, end_date) if market == ct.SH_MARKET_SYMBOL: df = df.loc[df.code == 'SSE'] df['code'] = '上海市场' else: df = df.loc[df.code == 'SZSE'] df['code'] = '深圳市场' df = df.round(2) df['rzye'] = df['rzye'] / 1e+8 df['rzmre'] = df['rzmre'] / 1e+8 df['rzche'] = df['rzche'] / 1e+8 df['rqye'] = df['rqye'] / 1e+8 df['rzrqye'] = df['rzrqye'] / 1e+8 df = df.drop_duplicates() df = df.reset_index(drop=True) df = df.sort_values(by='date', ascending=True) return df def get_index_df(self, code, start_date, end_date): cindex_client = CIndex(code) df = cindex_client.get_k_data_in_range(start_date, end_date) df['time'] = df.index.tolist() df = df[[ 'time', 'open', 'high', 'low', 'close', 'volume', 'amount', 'date' ]] return df def update(self, cdate=datetime.now().strftime('%Y-%m-%d')): start_date = get_day_nday_ago(cdate, 100, dformat="%Y-%m-%d") end_date = cdate try: #market info sh_df = self.get_market_data(ct.SH_MARKET_SYMBOL, start_date, end_date) sz_df = self.get_market_data(ct.SZ_MARKET_SYMBOL, start_date, end_date) date_list = list( set(sh_df.date.tolist()).intersection(set( sz_df.date.tolist()))) sh_df = sh_df[sh_df.date.isin(date_list)] sh_df = sh_df.reset_index(drop=True) sz_df = sz_df[sz_df.date.isin(date_list)] sz_df = sz_df.reset_index(drop=True) #rzrq info sh_rzrq_df = self.get_rzrq_info(ct.SH_MARKET_SYMBOL, start_date, end_date) sz_rzrq_df = self.get_rzrq_info(ct.SZ_MARKET_SYMBOL, start_date, end_date) date_list = list( set(sh_rzrq_df.date.tolist()).intersection( set(sz_rzrq_df.date.tolist()))) sh_rzrq_df = sh_rzrq_df[sh_rzrq_df.date.isin(date_list)] sh_rzrq_df = sh_rzrq_df.reset_index(drop=True) sz_rzrq_df = sz_rzrq_df[sz_rzrq_df.date.isin(date_list)] sz_rzrq_df = sz_rzrq_df.reset_index(drop=True) #average price info av_df = self.get_index_df('880003', start_date, end_date) #limit up and down info limit_info = CLimit(self.dbinfo).get_data(cdate) stock_info = self.rstock_client.get_data(cdate) stock_info = stock_info[stock_info.volume > 0] #get volume > 0 stock list stock_info = stock_info.reset_index(drop=True) #index info index_info = self.get_index_data(end_date) #industry analysis industry_info = self.get_industry_data(cdate) #all stock info all_stock_info = self.rstock_client.get_k_data_in_range( start_date, end_date) #gen review file and make dir for new data self.doc.generate(cdate, sh_df, sz_df, sh_rzrq_df, sz_rzrq_df, av_df, limit_info, stock_info, industry_info, index_info, all_stock_info) ##gen review animation #self.gen_animation() except Exception as e: self.logger.error(e) traceback.print_exc() def gen_animation(self, sfile=None): style.use('fivethirtyeight') Writer = animation.writers['ffmpeg'] writer = Writer(fps=1, metadata=dict(artist='biek'), bitrate=1800) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) _today = datetime.now().strftime('%Y-%m-%d') cdata = self.mysql_client.get('select * from %s where date = "%s"' % (ct.ANIMATION_INFO, _today)) if cdata is None: return None cdata = cdata.reset_index(drop=True) ctime_list = cdata.time.unique() name_list = cdata.name.unique() ctime_list = [ datetime.strptime(ctime, '%H:%M:%S') for ctime in ctime_list ] frame_num = len(ctime_list) if 0 == frame_num: return None def animate(i): ax.clear() ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S')) ax.xaxis.set_major_locator(mdates.DayLocator()) ax.set_title('盯盘', fontproperties=get_chinese_font()) ax.set_xlabel('时间', fontproperties=get_chinese_font()) ax.set_ylabel('增长', fontproperties=get_chinese_font()) ax.set_ylim((-6, 6)) fig.autofmt_xdate() for name in name_list: pchange_list = list() price_list = cdata[cdata.name == name]['price'].tolist() pchange_list.append(0) for _index in range(1, len(price_list)): pchange_list.append( 10 * (price_list[_index] - price_list[_index - 1]) / price_list[0]) ax.plot(ctime_list[0:i], pchange_list[0:i], label=name, linewidth=1.5) if pchange_list[i - 1] > 1 or pchange_list[i - 1] < -1: ax.text(ctime_list[i - 1], pchange_list[i - 1], name, font_properties=get_chinese_font()) ani = animation.FuncAnimation(fig, animate, frame_num, interval=60000, repeat=False) sfile = '/data/animation/%s_animation.mp4' % _today if sfile is None else sfile ani.save(sfile, writer) plt.close(fig)
class MarauderMap(): def __init__(self): self.ris = RIndexStock() self.logger = getLogger(__name__) def get_data(self, mdate): return self.ris.get_data(mdate) def plot(self, cdate, fdir, fname): df = self.ris.get_data(cdate) if df.empty: return fig, ax = plt.subplots() #get min profit day min_pday = df.pday.values.min() max_pday = df.pday.values.max() #get max profit day min_profit = df.profit.values.min() max_profit = df.profit.values.max() #set axis for map xmax = max(abs(min_pday), max_pday) ymax = max(abs(min_profit), max_profit) ax.set_xlim(-xmax, xmax) ax.set_ylim(-ymax, ymax) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data', 0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) for code in df.code.tolist(): pday = df.loc[df.code == code, 'pday'] profit = df.loc[df.code == code, 'profit'] ax.scatter(pday, profit, s=5, alpha=1, linewidths=0.1) plt.savefig('%s/%s.png' % (fdir, fname), dpi=1000) def gen_animation(self, end_date, days): import matplotlib.animation as animation matplotlib.use('Agg') start_date = get_day_nday_ago(end_date, num=days, dformat="%Y-%m-%d") df = self.ris.get_k_data_in_range(start_date, end_date) fig, ax = plt.subplots() #get min profit day min_pday = df.pday.values.min() max_pday = df.pday.values.max() #get max profit day min_profit = df.profit.values.min() max_profit = df.profit.values.max() #set axis for map xmax = max(abs(min_pday), max_pday) ymax = max(abs(min_profit), max_profit) groups = df.groupby(df.date) dates = list(set(df.date.tolist())) dates.sort() Writer = animation.writers['ffmpeg'] writer = Writer(fps=2, metadata=dict(artist='biek'), bitrate=-1) def init(): ax.clear() ax.set_xlim(-xmax, xmax) ax.set_ylim(-ymax, ymax) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data', 0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) def animate(i): cdate = dates[i] df = groups.get_group(cdate) init() print(cdate, len(df)) bull_stock_num = len(df[df.profit >= 0]) for code in df.code.tolist(): pday = df.loc[df.code == code, 'pday'] profit = df.loc[df.code == code, 'profit'] ax.scatter(pday, profit, color='black', s=1) ax.set_title("日期:%s 股票总数:%s 牛熊股比:%s" % (cdate, len(df), 100 * bull_stock_num / len(df)), fontproperties=get_chinese_font()) ani = animation.FuncAnimation(fig, animate, frames=len(dates), init_func=init, interval=1000, repeat=False) sfile = '/code/panimation.mp4' ani.save(sfile, writer) ax.set_title('Marauder Map for date') ax.grid(True) plt.close(fig)
elif code in black_set: return -1 else: return 0 #if __name__ == '__main__': # mval_client = MValuation() # mval_client.update_index(end_date = '2019-08-13') if __name__ == '__main__': try: mdate = 20190815 mval_client = MValuation() rindex_client = RIndexStock() df = rindex_client.get_data(transfer_int_to_date_string(mdate)) df['mv'] = df['totals'] * df['close'] df['mv'] = df['mv'] / 100000000 df = df[df.mv > 100] df = df[(df.profit > 1) & (df.profit < 6.5)] #黑名单 black_set = set(ct.BLACK_DICT.keys()) white_set = set(ct.WHITE_DICT.keys()) if len(black_set.intersection(white_set)) > 0: raise Exception("black and white has intersection.") df['history'] = df.apply( lambda row: get_hist_val(black_set, white_set, row['code']), axis=1) df = df[df['history'] > -1] #basic_info base_df = mval_client.stock_info_client.get()
import traceback import const as ct import pandas as pd from rstock import RIndexStock from cstock_info import CStockInfo from industry_info import IndustryInfo if __name__ == '__main__': try: mdate = '2019-08-02' cobj = CStockInfo() robj = RIndexStock() iobj = IndustryInfo() black_list = list(ct.BLACK_DICT.keys()) bdf = cobj.get() stock_info = robj.get_data(mdate) idf = iobj.get_csi_industry_data(mdate) df = pd.merge(bdf, idf, how='left', on=['code']) df = pd.merge(stock_info, df, how='inner', on=['code']) df = df[~df.code.isin(black_list)] df = df[(df.profit > 1) & (df.profit < 3) & (df.pday > 30) & (df.timeToMarket < 20150101)] df = df.reset_index(drop=True) #df = df[['code', 'name', 'industry', 'profit', 'pday', 'pind_name', 'sind_name', 'tind_name', 'find_name']] df = df[['code', 'name', 'profit', 'pday', 'find_name']] for name, contains in df.groupby('find_name'): if len(contains) > 2: print("--------------------") print(name) print(contains) print("====================")
class MarauderMap(): def __init__(self, code_list): self.codes = code_list self.ris = RIndexStock() self.logger = getLogger(__name__) def plot(self, cdate, fdir, fname): df = self.ris.get_data(cdate) if df.empty: return fig, ax = plt.subplots() #get min profit day min_pday = df.pday.values.min() max_pday = df.pday.values.max() #get max profit day min_profit = df.profit.values.min() max_profit = df.profit.values.max() #set axis for map xmax = max(abs(min_pday), max_pday) ymax = max(abs(min_profit), max_profit) ax.set_xlim(-xmax, xmax) ax.set_ylim(-ymax, ymax) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data', 0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) for code in self.codes: pday = df.loc[df.code == code, 'pday'] profit = df.loc[df.code == code, 'profit'] ax.scatter(pday, profit, s=5, alpha=1, linewidths=0.1) plt.savefig('%s/%s.png' % (fdir, fname), dpi=1000) def gen_animation(self, cdate): df = self.get_data(cdate) fig, ax = plt.subplots() Writer = animation.writers['ffmpeg'] writer = Writer(fps=30, metadata=dict(artist='biek'), bitrate=1800) #get min profit day min_pday = df.pday.values.min() max_pday = df.pday.values.max() #get max profit day min_profit = df.profit.values.min() max_profit = df.profit.values.max() #set axis for map xmax = max(abs(min_pday), max_pday) ymax = max(abs(min_profit), max_profit) groups = list(df.groupby(df.time)) def init(): ax.clear() ax.set_xlim(-xmax, xmax) ax.set_ylim(-ymax, ymax) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data', 0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) def animate(n): val = groups[n][1].values.tolist()[0] for code in self.codes: pday = val[1] profit = val[2] ax.scatter(pday, profit, s=5, alpha=1, linewidths=0.1) ani = animation.FuncAnimation(fig, animate, frames=300, init_func=init, interval=1, repeat=False) sfile = '/code/animation.mp4' ani.save(sfile, writer, fps=60, dpi=100) ax.set_title('Marauder Map for date') ax.grid(True) plt.close(fig)
class BullStockRatio: def __init__(self, index_code, dbinfo=ct.DB_INFO, redis_host=None): self.dbinfo = dbinfo self.index_code = index_code self.index_obj = CIndex(index_code, dbinfo=self.dbinfo, redis_host=redis_host) self.db_name = self.index_obj.get_dbname(index_code) self.logger = getLogger(__name__) self.ris = RIndexStock(dbinfo, redis_host) self.bull_stock_ratio_table = self.get_table_name() self.redis = create_redis_obj( ) if redis_host is None else create_redis_obj(redis_host) self.mysql_client = CMySQL(self.dbinfo, dbname=self.db_name, iredis=self.redis) if not self.create(): raise Exception("create emotion table failed") def delete(self): self.mysql_client.delete(self.bull_stock_ratio_table) def get_table_name(self): return "%s_%s" % (self.db_name, ct.BULLSTOCKRATIO_TABLE) def create(self): if self.bull_stock_ratio_table not in self.mysql_client.get_all_tables( ): sql = 'create table if not exists %s(date varchar(10) not null, ratio float, PRIMARY KEY (date))' % self.bull_stock_ratio_table if not self.mysql_client.create(sql, self.bull_stock_ratio_table): return False return True def is_date_exists(self, table_name, cdate): if self.redis.exists(table_name): return cdate in set( str(tdate, encoding=ct.UTF8) for tdate in self.redis.smembers(table_name)) return False def get_k_data_between(self, start_date, end_date): sql = "select * from %s where date between \"%s\" and \"%s\"" % ( self.get_table_name(), start_date, end_date) return self.mysql_client.get(sql) def get_components(self, cdate): df = self.index_obj.get_components_data(cdate) if df is None: return list() if df.empty: return list() if self.index_code == '000001': df = df[df.code.str.startswith('6')] return df.code.tolist() def get_data(self, cdate): return self.ris.get_data(cdate) def update(self, end_date=None, num=30): if end_date is None: end_date = datetime.now().strftime('%Y-%m-%d') #start_date = "1997-12-30" start_date = get_day_nday_ago(end_date, num=num, dformat="%Y-%m-%d") succeed = True code_list = self.get_components(end_date) if 0 == len(code_list): self.logger.error("%s code_list for %s is empty" % (end_date, self.index_code)) return False for mdate in get_dates_array(start_date, end_date): if CCalendar.is_trading_day(mdate, redis=self.redis): if not self.set_ratio(code_list, mdate): self.logger.error("set %s score for %s set failed" % (self.index_code, mdate)) succeed = False return succeed def get_profit_stocks(self, df): data = df[df.profit >= 0] return data.code.tolist() def set_ratio(self, now_code_list, cdate=datetime.now().strftime('%Y-%m-%d')): if self.is_date_exists(self.bull_stock_ratio_table, cdate): self.logger.debug("existed date:%s, date:%s" % (self.bull_stock_ratio_table, cdate)) return True code_list = self.get_components(cdate) if len(code_list) == 0: code_list = now_code_list df = self.get_data(cdate) if df is None: return False if df.empty: return False df = df[df.code.isin(code_list)] if df.empty: return True profit_code_list = self.get_profit_stocks(df) bull_stock_num = len(profit_code_list) bull_ration = 100 * bull_stock_num / len(df) data = {'date': [cdate], 'ratio': [bull_ration]} df = pd.DataFrame.from_dict(data) if self.mysql_client.set(df, self.bull_stock_ratio_table): return self.redis.sadd(self.bull_stock_ratio_table, cdate) return False
class Emotion: def __init__(self, dbinfo = ct.DB_INFO, redis_host = None): self.dbinfo = dbinfo self.emotion_table = ct.EMOTION_TABLE self.redis = create_redis_obj() if redis_host is None else create_redis_obj(redis_host) self.mysql_client = CMySQL(self.dbinfo, iredis = self.redis) self.rstock_client = RIndexStock(dbinfo, redis_host) self.logger = getLogger(__name__) if not self.create(): raise Exception("create emotion table failed") def create(self): if self.emotion_table not in self.mysql_client.get_all_tables(): sql = 'create table if not exists %s(date varchar(10) not null, score float, PRIMARY KEY (date))' % self.emotion_table if not self.mysql_client.create(sql, self.emotion_table): return False return True def get_score(self, cdate = None): if cdate is None: sql = "select * from %s" % self.emotion_table else: sql = "select * from %s where date=\"%s\"" %(self.emotion_table, cdate) return self.mysql_client.get(sql) def get_stock_data(self, cdate): df_byte = self.redis.get(ct.TODAY_ALL_STOCK) if df_byte is None: return None df = _pickle.loads(df_byte) return df.loc[df.date == date] def update(self, end_date = None, num = 3): if end_date is None: end_date = datetime.now().strftime('%Y-%m-%d') start_date = get_day_nday_ago(end_date, num = num, dformat = "%Y-%m-%d") succeed = True for mdate in get_dates_array(start_date, end_date): if CCalendar.is_trading_day(mdate, redis = self.redis): if not self.set_score(mdate): succeed = False self.logger.info("set score for %s set failed" % mdate) return succeed def set_score(self, cdate = datetime.now().strftime('%Y-%m-%d')): stock_info = self.rstock_client.get_data(cdate) limit_info = CLimit(self.dbinfo).get_data(cdate) if stock_info.empty or limit_info.empty: self.logger.error("info is empty failed") return False limit_up_list = limit_info[(limit_info.pchange > 0) & (limit_info.prange != 0)].reset_index(drop = True).code.tolist() limit_down_list = limit_info[limit_info.pchange < 0].reset_index(drop = True).code.tolist() limit_up_list.extend(limit_down_list) total = 0 for _index, pchange in stock_info.pchange.iteritems(): code = stock_info.loc[_index, 'code'] if code in limit_up_list: total += 2 * pchange else: total += pchange aver = total / len(stock_info) data = {'date':[cdate], 'score':[aver]} df = pd.DataFrame.from_dict(data) return self.mysql_client.set(df, self.emotion_table)