def main(save_id, gen_itr, gen_vee, train_p, eval_p, backbone_id, full_p=False): print( "save_id: {0}, train_p : {1}, eval_p: {2}, backbone_id: {3}, full_p: {4}" .format(save_id, train_p, eval_p, backbone_id, full_p)) if full_p: from exec_classifier_bottleneck import main as bottleneck_main bottleneck_main(save_id, train_p, eval_p, backbone_id) from model_def import define_model model_dict = define_model(backbone_id) num_segments = model_dict["num_segments"] bottleneck_size = model_dict["bottleneck_size"] dense_sample = model_dict["dense_sample"] dense_rate = model_dict["dense_rate"] dir_name = os.path.join("saved_models", save_id) # lfd_params if not os.path.exists(dir_name): os.makedirs(dir_name) filename = os.path.join(dir_name, "../model") lfd_params = default_model_args(save_id=save_id, log_dir=dir_name, num_segments=num_segments, bottleneck_size=bottleneck_size, dense_sample=dense_sample, dense_rate=dense_rate) if gen_itr: print("Training Pipeline") model = ClassifierDITRL(lfd_params, filename, backbone_id, use_feature_extractor=True, use_spatial=False, use_pipeline=True, use_temporal=False, spatial_train=False, ditrl_pipeline_train=True, use_gcn=True) model = train_pipeline(lfd_params, model) model.save_model() print("Generating ITR Files") generate_itr_files_gcn(lfd_params, model, "train", backbone=backbone_id) generate_itr_files_gcn(lfd_params, model, "evaluation", backbone=backbone_id) ''' if gen_vee: model = ClassifierDITRL(lfd_params, filename, backbone_id, use_feature_extractor=True, use_spatial=False, use_pipeline=True, use_temporal=False, spatial_train=False, ditrl_pipeline_train=False, return_vee=True) print("Generating Sparse IAD Files") generate_binarized_iad_files(lfd_params, model, "train", backbone=backbone_id) generate_binarized_iad_files(lfd_params, model, "evaluation", backbone=backbone_id) ''' if train_p: print("Training Policy") model = PolicyLearnerDITRL(lfd_params, filename, backbone_id, use_feature_extractor=False, use_spatial=False, use_pipeline=False, use_temporal=True, spatial_train=False, ditrl_pipeline_train=False, temporal_train=True, policy_train=True, use_gcn=True) model = train(lfd_params, model, input_dtype="gcn", verbose=False, ablation=False) # make sure to use ITRs print("--------------") print("Saved Model") model.save_model() if eval_p: model = PolicyLearnerDITRL(lfd_params, filename, backbone_id, use_feature_extractor=False, use_spatial=False, use_pipeline=False, use_temporal=True, spatial_train=False, ditrl_pipeline_train=False, temporal_train=False, use_gcn=True) ''' df = evaluate_single_action(lfd_params, model, input_dtype="itr") out_filename = os.path.join(lfd_params.args.output_dir, "output_" + save_id + "_single_action.csv") df.to_csv(out_filename) print("Output placed in: " + out_filename) ''' df = evaluate_action_trace(lfd_params, model, input_dtype="gcn") out_filename = os.path.join(lfd_params.args.output_dir, "output_" + save_id + "_action_trace.csv") df.to_csv(out_filename) print("Output placed in: " + out_filename) df = evaluate_action_trace(lfd_params, model, input_dtype="gcn", ablation=True, verbose=False, mode="train") out_filename = os.path.join( lfd_params.args.output_dir, "output_" + save_id + "_action_trace_ablation_train.csv") df.to_csv(out_filename) print("Output placed in: " + out_filename) df = evaluate_action_trace(lfd_params, model, input_dtype="gcn", ablation=True, verbose=False, mode="evaluation") out_filename = os.path.join( lfd_params.args.output_dir, "output_" + save_id + "_action_trace_ablation_eval.csv") df.to_csv(out_filename) print("Output placed in: " + out_filename)
def main(save_id, gen_itr, gen_vee, train_p, eval_p, backbone_id, full_p=False): if full_p: from exec_classifier_bottleneck import main as backbone_main backbone_main(save_id, train_p, eval_p, backbone_id) from model_def import define_model model_dict = define_model(backbone_id) num_segments = model_dict["num_segments"] bottleneck_size = model_dict["bottleneck_size"] dense_sample = model_dict["dense_sample"] dense_rate = model_dict["dense_rate"] dir_name = os.path.join("saved_models", save_id) # lfd_params if not os.path.exists(dir_name): os.makedirs(dir_name) filename = os.path.join(dir_name, "../model") lfd_params = default_model_args(save_id=save_id, log_dir=dir_name, num_segments=num_segments, bottleneck_size=bottleneck_size, dense_sample=dense_sample, dense_rate=dense_rate) if gen_itr: print("Training Pipeline") model = ClassifierDITRL(lfd_params, filename, backbone_id, use_feature_extractor=True, use_spatial=False, use_pipeline=True, use_temporal=False, spatial_train=False, ditrl_pipeline_train=True) model = train_pipeline(lfd_params, model) model.save_model() print("Generating ITR Files") generate_itr_files(lfd_params, model, "train") generate_itr_files(lfd_params, model, "evaluation") if gen_vee: model = ClassifierDITRL(lfd_params, filename, backbone_id, use_feature_extractor=True, use_spatial=False, use_pipeline=True, use_temporal=False, spatial_train=False, ditrl_pipeline_train=False, return_vee=True) print("Generating Sparse IAD Files") generate_binarized_iad_files(lfd_params, model, "train", backbone=backbone_id) generate_binarized_iad_files(lfd_params, model, "evaluation", backbone=backbone_id) if train_p: model = ClassifierDITRL(lfd_params, filename, backbone_id, use_feature_extractor=False, use_spatial=False, use_pipeline=False, use_temporal=True, spatial_train=False, ditrl_pipeline_train=False, temporal_train=True) model = train(lfd_params, model, input_dtype="itr", verbose=True) # make sure to use ITRs model.save_model() if eval_p: print("Evaluating Model") model = ClassifierDITRL(lfd_params, filename, backbone_id, use_feature_extractor=False, use_spatial=False, use_pipeline=False, use_temporal=True, spatial_train=False, ditrl_pipeline_train=False, temporal_train=False) train_df = evaluate(lfd_params, model, mode="train", input_dtype="itr") train_df["mode"] = ["train"] * len(train_df) eval_df = evaluate(lfd_params, model, mode="evaluation", verbose=True, input_dtype="itr") eval_df["mode"] = ["evaluation"] * len(eval_df) df = pd.concat([train_df, eval_df]) df["repeat"] = [save_id] * len(df) out_filename = os.path.join(lfd_params.args.output_dir, "output_" + save_id + ".csv") df.to_csv(out_filename) print("Output placed in: " + out_filename)