import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #Suppress build warnings import sys import shared sys.path.append(".") #..welp from run_rnn import GruSettings, run_gru settings = GruSettings() settings.max_verbosity = 2 settings.epochs = 400 settings.epochs_retrain = 125 settings.online = True nodes = 180 lr = 0.0015 settings.nodes = nodes settings.batch_size = 512 settings.lr = lr settings.loss = 'mae' settings.stateful = False settings.lookback = 75 settings.lookback_as_features = True settings.feature_count = 3 settings.predictionStep = 5 settings.season = 48 settings.adam_eps = 0.001 settings.retrain_interval = 1000 settings.reset_on_retrain = False settings.refeed_on_retrain = True settings.cutoff_normalize = True settings.use_dropout = True
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' #Suppress build warnings import sys import shared sys.path.append(".") #..welp from run_rnn import GruSettings, run_gru settings = GruSettings() settings.max_verbosity = 2 settings.epochs = 200 settings.epochs_retrain = 60 settings.online = True nodes = 200 lr = 0.003#231262326395 settings.nodes = nodes settings.batch_size = 128 settings.lr = lr settings.loss = 'mae' settings.stateful=False settings.lookback = 50 settings.lookback_as_features=False settings.feature_count = 3 settings.predictionStep = 5 settings.season = 48 settings.adam_eps = 0.001 settings.retrain_interval = 1000 settings.reset_on_retrain = False settings.refeed_on_retrain = True settings.cutoff_normalize = True
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #Suppress build warnings import sys import shared sys.path.append(".") #..welp from run_rnn import GruSettings, run_gru settings = GruSettings() settings.max_verbosity = 2 settings.epochs = 100 settings.online = True nodes = 20 lr = 0.1 settings.nodes = nodes settings.batch_size = 1 settings.lr = lr settings.loss = 'mse' settings.stateful = False settings.lookback = None settings.lookback_as_features = False settings.feature_count = 3 settings.predictionStep = 5 settings.season = 48 settings.adam_eps = 0.001 settings.retrain_interval = 336 settings.reset_on_retrain = True settings.refeed_on_retrain = False settings.cutoff_normalize = False settings.use_dropout = False settings.nTrain = 5000
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' #Suppress build warnings import sys import shared sys.path.append(".") #..welp from run_rnn import GruSettings, run_gru settings = GruSettings() settings.max_verbosity = 2 settings.epochs = 300 settings.epochs_retrain = 100 settings.online = True nodes = 130 lr = 0.02#11389451319 settings.nodes = nodes settings.batch_size = 1 settings.lr = lr settings.loss = 'mae' settings.stateful=False settings.lookback = None settings.lookback_as_features=False settings.feature_count = 3 settings.predictionStep = 5 settings.season = 48 settings.adam_eps = 0.001 settings.retrain_interval = 1000 settings.reset_on_retrain = False settings.refeed_on_retrain = True settings.cutoff_normalize = True
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #Suppress build warnings from run_rnn import GruSettings, run_gru settings = GruSettings() settings.max_verbosity = 2 settings.epochs = 50 settings.epochs_retrain = 25 settings.online = True nodes = 40 #317 lr = 0.003 #0.0031802801373# 0.0077 settings.nodes = nodes settings.batch_size = 1024 settings.lr = lr settings.loss = 'mae' settings.stateful = False settings.lookback = 60 #None to not use lookbacks settings.lookback_as_features = True #Considers each lookback value a separate feature if True, ignored if lookback is None settings.feature_count = 3 #Uses the first `feature_count` selected columns as features, ignored if `lookback_as_features` settings.predictionStep = 5 settings.season = 48 settings.adam_eps = 0.001 settings.retrain_interval = 1000 settings.reset_on_retrain = False settings.onego_refeed_on_retrain = True settings.cutoff_normalize = True settings.use_dropout = False settings.nTrain = 5000 settings.ignore_for_error = [5500, 10000] settings.normalization_type = 'default' settings.implementation = 'keras'
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #Suppress build warnings import sys import shared sys.path.append(".") #..welp from run_rnn import GruSettings, run_gru settings = GruSettings() settings.max_verbosity = 2 settings.epochs = 75 settings.online = True nodes = 50 lr = 0.02 settings.nodes = nodes settings.batch_size = 256 settings.lr = lr settings.loss = 'mae' settings.stateful = False settings.lookback = 75 settings.lookback_as_features = True settings.feature_count = 3 settings.predictionStep = 5 settings.season = 48 settings.adam_eps = 0.001 settings.retrain_interval = 2500 settings.reset_on_retrain = True #TEMP MODIFIED settings.refeed_on_retrain = True settings.cutoff_normalize = True settings.nTrain = 5000
(2: dataset name) 3: nodes 4: retrain 5: lr 6: lookback 7: epochs 8: online 9: batch 10: lb_as_features 11: feature_count 12: implementation 13: adam epsilon """ settings = GruSettings() settings.max_verbosity = 0 settings.epochs = int(argv[7]) settings.online = True if argv[8] == "True" else False try: settings.lookback = int(argv[6]) except: settings.lookback = None settings.nodes = int(argv[3]) try: settings.batch_size = int(argv[9]) except: settings.batch_size = None settings.retrain_interval = int(argv[4]) settings.lookback_as_features = True if argv[10] == "True" else False settings.feature_count = int(argv[11]) settings.lr = float(argv[5]) settings.predictionStep = 5