Example #1
0
def test_statistics():

    alpha = [random.random() for val in range(count)]

    alpha_stats = Statistics()
    for val in alpha:
        alpha_stats.push(val)

    assert len(alpha_stats) == count
    assert error(mean(alpha), alpha_stats.mean()) < error_limit
    assert error(variance(alpha), alpha_stats.variance()) < error_limit
    assert error(stddev(alpha), alpha_stats.stddev()) < error_limit
    assert error(skewness(alpha), alpha_stats.skewness()) < error_limit
    assert error(kurtosis(alpha), alpha_stats.kurtosis()) < error_limit
    assert alpha_stats.minimum() == min(alpha)
    assert alpha_stats.maximum() == max(alpha)

    alpha_stats.clear()

    assert len(alpha_stats) == 0

    alpha_stats = Statistics(alpha)

    beta = [random.random() for val in range(count)]

    beta_stats = Statistics()

    for val in beta:
        beta_stats.push(val)

    gamma_stats = alpha_stats + beta_stats

    assert len(beta_stats) != len(gamma_stats)
    assert error(mean(alpha + beta), gamma_stats.mean()) < error_limit
    assert error(variance(alpha + beta), gamma_stats.variance()) < error_limit
    assert error(stddev(alpha + beta), gamma_stats.stddev()) < error_limit
    assert error(skewness(alpha + beta), gamma_stats.skewness()) < error_limit
    assert error(kurtosis(alpha + beta), gamma_stats.kurtosis()) < error_limit
    assert gamma_stats.minimum() == min(alpha + beta)
    assert gamma_stats.maximum() == max(alpha + beta)

    delta_stats = beta_stats.copy()
    delta_stats += alpha_stats

    assert len(beta_stats) != len(delta_stats)
    assert error(mean(alpha + beta), delta_stats.mean()) < error_limit
    assert error(variance(alpha + beta), delta_stats.variance()) < error_limit
    assert error(stddev(alpha + beta), delta_stats.stddev()) < error_limit
    assert error(skewness(alpha + beta), delta_stats.skewness()) < error_limit
    assert error(kurtosis(alpha + beta), delta_stats.kurtosis()) < error_limit
    assert delta_stats.minimum() == min(alpha + beta)
    assert delta_stats.maximum() == max(alpha + beta)
Example #2
0
def main():
    args = list(map(float, sys.argv[1:]))

    print('Statistics Functions')
    print('Count:', len(args))
    print('Mean:', mean(args))
    print('Variance:', variance(args))
    print('StdDev:', stddev(args))
    print('Skewness:', skewness(args))
    print('Kurtosis:', kurtosis(args))

    fast_stats = FastStatistics()

    for arg in args:
        fast_stats.push(arg)

    print()
    print('FastStatistics')
    print('Count:', len(fast_stats))
    print('Mean:', fast_stats.mean())
    print('Variance:', fast_stats.variance())
    print('StdDev:', fast_stats.stddev())
    print('Skewness:', fast_stats.skewness())
    print('Kurtosis:', fast_stats.kurtosis())

    core_stats = CoreStatistics()

    for arg in args:
        core_stats.push(arg)

    print()
    print('CoreStatistics')
    print('Count:', len(core_stats))
    print('Mean:', core_stats.mean())
    print('Variance:', core_stats.variance())
    print('StdDev:', core_stats.stddev())
    print('Skewness:', core_stats.skewness())
    print('Kurtosis:', core_stats.kurtosis())

    fast_exp_stats = FastExponentialStatistics()

    for arg in args:
        fast_exp_stats.push(arg)

    print()
    print('FastExponentialStatistics')
    print('Decay Rate (default):', fast_exp_stats.get_decay())
    print('Exponential Mean:', fast_exp_stats.mean())
    print('Exponential Variance:', fast_exp_stats.variance())
    print('Exponential StdDev:', fast_exp_stats.stddev())

    core_exp_stats = CoreExponentialStatistics()

    for arg in args:
        core_exp_stats.push(arg)

    print()
    print('CoreExponentialStatistics')
    print('Decay Rate (default):', core_exp_stats.get_decay())
    print('Exponential Mean:', core_exp_stats.mean())
    print('Exponential Variance:', core_exp_stats.variance())
    print('Exponential StdDev:', core_exp_stats.stddev())

    fast_regr = FastRegression()

    for index, arg in enumerate(args, 1):
        fast_regr.push(index, arg)

    print()
    print('FastRegression')
    print('Count:', len(fast_regr))
    print('Slope:', fast_regr.slope())
    print('Intercept:', fast_regr.intercept())
    print('Correlation:', fast_regr.correlation())

    core_regr = CoreRegression()

    for index, arg in enumerate(args, 1):
        core_regr.push(index, arg)

    print()
    print('CoreRegression')
    print('Count:', len(core_regr))
    print('Slope:', core_regr.slope())
    print('Intercept:', core_regr.intercept())
    print('Correlation:', core_regr.correlation())
Example #3
0
        series.append(r_t)

    #print (series)

    stats = Statistics()
    for x in series:
        stats.push(x)

    # Test kurtosis and skewness

    # Skewness < 0 indicates large decreases after many small gains, skewness > 0 indicates large gains after many small losses
    # Optimally want -0.8 < x < 0, or x > 1
    print('skewness: ', stats.skewness())

    # Kurtosis we want to be leptokurtic (> average)
    print('kurtosis: ', stats.kurtosis())

    # TODO Jarque-Bera about normal distribution - pref want not a normal distribution (ie reject H0 / p-value ~= 0)

    # TODO time series tests

    # Evaluate trading over time inputdata (not the log series)
    # TODO, shorting??
    start = 1000
    isBought = False
    isInitial = True
    initialTradePrice = 1
    current = start
    mintick = 0.00000001  # Minimum tick
    totalTrades = -1
Example #4
0
def main():
    args = list(map(float, sys.argv[1:]))

    print('Statistics Functions')
    print('Count:', len(args))
    print('Mean:', mean(args))
    print('Variance:', variance(args))
    print('StdDev:', stddev(args))
    print('Skewness:', skewness(args))
    print('Kurtosis:', kurtosis(args))

    fast_stats = FastStatistics()

    for arg in args:
        fast_stats.push(arg)

    print()
    print('FastStatistics')
    print('Count:', len(fast_stats))
    print('Mean:', fast_stats.mean())
    print('Variance:', fast_stats.variance())
    print('StdDev:', fast_stats.stddev())
    print('Skewness:', fast_stats.skewness())
    print('Kurtosis:', fast_stats.kurtosis())

    core_stats = CoreStatistics()

    for arg in args:
        core_stats.push(arg)

    print()
    print('CoreStatistics')
    print('Count:', len(core_stats))
    print('Mean:', core_stats.mean())
    print('Variance:', core_stats.variance())
    print('StdDev:', core_stats.stddev())
    print('Skewness:', core_stats.skewness())
    print('Kurtosis:', core_stats.kurtosis())

    fast_regr = FastRegression()

    for index, arg in enumerate(args, 1):
        fast_regr.push(index, arg)

    print()
    print('FastRegression')
    print('Count:', len(fast_regr))
    print('Slope:', fast_regr.slope())
    print('Intercept:', fast_regr.intercept())
    print('Correlation:', fast_regr.correlation())

    core_regr = CoreRegression()

    for index, arg in enumerate(args, 1):
        core_regr.push(index, arg)

    print()
    print('CoreRegression')
    print('Count:', len(core_regr))
    print('Slope:', core_regr.slope())
    print('Intercept:', core_regr.intercept())
    print('Correlation:', core_regr.correlation())
def main():
    args = list(map(float, sys.argv[1:]))

    print('Statistics Functions')
    print('Count:', len(args))
    print('Mean:', mean(args))
    print('Variance:', variance(args))
    print('StdDev:', stddev(args))
    print('Skewness:', skewness(args))
    print('Kurtosis:', kurtosis(args))

    exp_mean, exp_var = exp_mean_var(0.9, args)
    exp_cov, exp_cor = exp_cov_cor(0.9, enumerate(args, 1))
    print('Exponential Moving Mean (decay=0.9):', exp_mean)
    print('Exponential Moving Variance (decay=0.9):', exp_var)
    print('Exponential Moving StdDev (decay=0.9):', exp_var**0.5)
    print('Exponential Moving Covariance (decay=0.9):', exp_cov)
    print('Exponential Moving Correlation (decay=0.9):', exp_cor)

    fast_stats = FastStatistics()

    for arg in args:
        fast_stats.push(arg)

    print()
    print('FastStatistics')
    print('Count:', len(fast_stats))
    print('Mean:', fast_stats.mean())
    print('Variance:', fast_stats.variance())
    print('StdDev:', fast_stats.stddev())
    print('Skewness:', fast_stats.skewness())
    print('Kurtosis:', fast_stats.kurtosis())

    core_stats = CoreStatistics()

    for arg in args:
        core_stats.push(arg)

    print()
    print('CoreStatistics')
    print('Count:', len(core_stats))
    print('Mean:', core_stats.mean())
    print('Variance:', core_stats.variance())
    print('StdDev:', core_stats.stddev())
    print('Skewness:', core_stats.skewness())
    print('Kurtosis:', core_stats.kurtosis())

    fast_exp_stats = FastExponentialStatistics()

    for arg in args:
        fast_exp_stats.push(arg)

    print()
    print('FastExponentialMovingStatistics')
    print('Decay Rate (default):', fast_exp_stats.decay)
    print('Exponential Mean:', fast_exp_stats.mean())
    print('Exponential Variance:', fast_exp_stats.variance())
    print('Exponential StdDev:', fast_exp_stats.stddev())

    core_exp_stats = CoreExponentialStatistics()

    for arg in args:
        core_exp_stats.push(arg)

    print()
    print('CoreExponentialMovingStatistics')
    print('Decay Rate (default):', core_exp_stats.decay)
    print('Exponential Mean:', core_exp_stats.mean())
    print('Exponential Variance:', core_exp_stats.variance())
    print('Exponential StdDev:', core_exp_stats.stddev())

    fast_regr = FastRegression()

    for index, arg in enumerate(args, 1):
        fast_regr.push(index, arg)

    print()
    print('FastRegression')
    print('Count:', len(fast_regr))
    print('Slope:', fast_regr.slope())
    print('Intercept:', fast_regr.intercept())
    print('Correlation:', fast_regr.correlation())

    core_regr = CoreRegression()

    for index, arg in enumerate(args, 1):
        core_regr.push(index, arg)

    print()
    print('CoreRegression')
    print('Count:', len(core_regr))
    print('Slope:', core_regr.slope())
    print('Intercept:', core_regr.intercept())
    print('Correlation:', core_regr.correlation())

    fast_exp_cov = FastExponentialCoveriance()

    for index, arg in enumerate(args, 1):
        fast_exp_cov.push(index, arg)

    print()
    print('FastExponentialCovariance')
    print('Decay Rate (default):', fast_exp_cov.decay)
    print('Exponential Moving Covariance:', fast_exp_cov.covariance())
    print('Exponential Moving Correlation:', fast_exp_cov.correlation())

    core_exp_cov = CoreExponentialCoveriance()

    for index, arg in enumerate(args, 1):
        core_exp_cov.push(index, arg)

    print()
    print('CoreExponentialCovariance')
    print('Decay Rate (default):', core_exp_cov.decay)
    print('Exponential Moving Covariance:', core_exp_cov.covariance())
    print('Exponential Moving Correlation:', core_exp_cov.correlation())
Example #6
0
print('Skewness:', skewness(args))
print('Kurtosis:', kurtosis(args))

fast_stats = FastStatistics()

for arg in args:
    fast_stats.push(arg)

print()
print('FastStatistics')
print('Count:', len(fast_stats))
print('Mean:', fast_stats.mean())
print('Variance:', fast_stats.variance())
print('StdDev:', fast_stats.stddev())
print('Skewness:', fast_stats.skewness())
print('Kurtosis:', fast_stats.kurtosis())

core_stats = CoreStatistics()

for arg in args:
    core_stats.push(arg)

print()
print('CoreStatistics')
print('Count:', len(core_stats))
print('Mean:', core_stats.mean())
print('Variance:', core_stats.variance())
print('StdDev:', core_stats.stddev())
print('Skewness:', core_stats.skewness())
print('Kurtosis:', core_stats.kurtosis())