Example #1
0
File: gui.py Project: ssyoon/semnet
def network_properties(command):
    subj_props = command['data_parameters']
    command = command['network_parameters']
    Xs, items, irts, numnodes = rw.readX(subj_props['subject'],
                                         subj_props['category'],
                                         subj_props['fullpath'])

    def no_persev(x):
        seen = set()
        seen_add = seen.add
        return [i for i in x if not (i in seen or seen_add(i))]

    toydata = rw.Data({
        'numx': len(Xs),
        'trim': 1,
        'jump': 0.0,
        'jumptype': "stationary",
        'priming': 0.0,
        'startX': "stationary"
    })
    fitinfo = rw.Fitinfo({
        'startGraph': "goni_valid",
        'goni_size': 2,
        'goni_threshold': 2,
        'followtype': "avg",
        'prior_samplesize': 10000,
        'recorddir': "records/",
        'prune_limit': 100,
        'triangle_limit': 100,
        'other_limit': 100
    })

    if command['network_method'] == "RW":
        bestgraph = rw.noHidden(Xs, numnodes)
    elif command['network_method'] == "Goni":
        bestgraph = rw.goni(Xs, numnodes, td=toydata, valid=0, fitinfo=fitinfo)
    elif command['network_method'] == "U-INVITE":
        no_persev_Xs = [no_persev(x) for x in Xs
                        ]  # U-INVITE doesn't work with perseverations
        bestgraph, ll = rw.uinvite(no_persev_Xs,
                                   toydata,
                                   numnodes,
                                   fitinfo=fitinfo,
                                   debug=False)

    nxg = nx.to_networkx_graph(bestgraph)

    node_degree = np.mean(nxg.degree().values())
    nxg_json = jsonGraph(nxg, items)
    clustering_coefficient = nx.average_clustering(nxg)
    try:
        aspl = nx.average_shortest_path_length(nxg)
    except:
        aspl = "disjointed graph"

    return {
        "type": "network_properties",
        "node_degree": node_degree,
        "clustering_coefficient": clustering_coefficient,
        "aspl": aspl,
        "graph": nxg_json
    }
Example #2
0
    category="animals"
    Xs, items, irts.data, numnodes=rw.readX(subj,category,'./Spring2015/results_cleaned.csv',ignorePerseverations=True)

    # uinvite prior
    priorgraphs=[]
    prioritems=[]
    for osub in subs:
        if osub != subj:
            g, i = rw.read_csv('Sdirected2015.csv',cols=("node1","node2"),header=True,filters={"subj": osub, "uinvite": "1"},undirected=False)
            priorgraphs.append(g)
            prioritems.append(i)
    priordict = rw.genGraphPrior(priorgraphs, prioritems)

    toydata.numx = len(Xs)
    prior = (priordict, items)

    # u-invite
    directed_prior_graph, bestval=rw.uinvite(Xs, toydata, numnodes, fitinfo=fitinfo, prior=prior)

    # rw
    rw_graph=rw.noHidden(Xs, numnodes)


    g=nx.DiGraph(directed_prior_graph)
    g2=nx.DiGraph(rw_graph)

    nx.relabel_nodes(g, items, copy=False)
    nx.relabel_nodes(g2, items, copy=False)

    rw.write_csv([g, g2],subj+"_directed_prior_nosparse.csv",subj,directed=True) # write multiple graphs
Example #3
0
        'exgauss_sigma': 6.58655566,
        'irt_weight': 0.95,
        'rcutoff': 20})

for subj in subs:
    print subj
    category="animals"
    Xs, items, irts.data, numnodes=rw.readX(subj,category,'./Spring2015/results_cleaned.csv',ignorePerseverations=True)
    
    toydata.numx = len(Xs)
    [mu, sig, lambd] = rw.mexgauss(rw.flatten_list(irts.data))
    irts.exgauss_sigma = sig    
    irts.exgauss_lambda = lambd

    # u-invite
    uinvite_graph, bestval=rw.uinvite(Xs, toydata, numnodes, fitinfo=fitinfo)

    # irt95
    irts.irt_weight=0.95
    irt95_graph, bestval=rw.uinvite(Xs, toydata, numnodes, irts=irts, fitinfo=fitinfo)

    # irt5
    irts.irt_weight=0.5
    irt5_graph, bestval=rw.uinvite(Xs, toydata, numnodes, irts=irts, fitinfo=fitinfo)

    # rw
    rw_graph=rw.noHidden(Xs, numnodes)

    # goni
    goni_graph=rw.goni(Xs, numnodes, td=toydata, valid=0, fitinfo=fitinfo)
    
Example #4
0
        'irttype': "exgauss",
        'lambda': 0.721386887,
        'sigma': 6.58655566,
        'irt_weight': 0.5,
        'rcutoff': 20})

subs=['S102','S103','S104','S105','S106','S107','S108','S109','S110',
      'S111','S112','S113','S114','S115','S116','S117','S118','S119','S120']

# u-invite
for subj in subs:
    category="animals"
    Xs, items, irts.data, numnodes=rw.readX(subj,category,'./Spring2015/results_cleaned.csv',ignorePerseverations=True)
    toydata.numx = len(Xs)

    uinvite_graph, bestval=rw.uinvite(Xs, toydata, numnodes, fitinfo=fitinfo)

    #orig=rw.probX(Xs, uinvite_graph, toydata)

    extra_data={}

    for inum, i in enumerate(uinvite_graph):
        for jnum, j in enumerate(i):
            if uinvite_graph[inum,jnum]==1:
                uinvite_graph[inum,jnum]=0
                uinvite_graph[jnum,inum]=0
                result=rw.probX(Xs, uinvite_graph, toydata, forceCompute=True)
                if items[inum] not in extra_data:
                    extra_data[items[inum]]={}
                if items[jnum] not in extra_data:
                    extra_data[items[jnum]]={}
Example #5
0
    'numnodes': 50,
    'numlinks': 6
})

fh = open('priming_test.csv', 'w')

seed = 15

for td in toydata:
    print "numx: ", td.numx
    # generate data with priming and fit best graph
    g, a = rw.genG(toygraph, seed=seed)
    [Xs, irts, alter_graph] = rw.genX(g, td, seed=seed)
    bestgraph_priming, ll = rw.uinvite(Xs,
                                       td,
                                       toygraph.numnodes,
                                       fitinfo=fitinfo,
                                       seed=seed,
                                       debug=True)
    priming_cost = rw.cost(bestgraph_priming, a)
    print priming_cost

    td.priming = 0.0
    # fit best graph assuming no priming
    bestgraph_nopriming, ll = rw.uinvite(Xs,
                                         td,
                                         toygraph.numnodes,
                                         fitinfo=fitinfo,
                                         seed=seed,
                                         debug=True)
    nopriming_cost = rw.cost(bestgraph_nopriming, a)
    print nopriming_cost
Example #6
0
irts = rw.Irts({
    'data': [],
    'irttype': "exgauss",
    'lambda': 0.721386887,
    'sigma': 6.58655566,
    'irt_weight': 0.9,
    'rcutoff': 20
})

for subj in subs:
    category = "animals"
    Xs, items, irts.data, numnodes = rw.readX(
        subj, category, './Spring2015/results_cleaned.csv')
    uinvite_irt9, bestval = rw.uinvite(Xs,
                                       toydata,
                                       numnodes,
                                       fitinfo=fitinfo,
                                       irts=irts)
    irts.irt_weight = 0.95
    uinvite_irt95, bestval = rw.uinvite(Xs,
                                        toydata,
                                        numnodes,
                                        fitinfo=fitinfo,
                                        irts=irts)
    irts.irt_weight = 0.5
    uinvite_irt5, bestval = rw.uinvite(Xs,
                                       toydata,
                                       numnodes,
                                       fitinfo=fitinfo,
                                       irts=irts)
    g = nx.to_networkx_graph(uinvite_irt5)
Example #7
0
    rnd += 1
    changesmade = 0
    np.random.shuffle(subs)

    for subj in subs:
        print "ss: ", subj
        subj_idx = original_order.index(subj)
        toydata.numx = len(ss_Xs[subj_idx])
        fitinfo.startGraph = prior_graphs[subj_idx]

        prior = (priordict, prior_items[subj_idx])

        # find best graph
        uinvite_graph, bestval = rw.uinvite(ss_Xs[subj_idx],
                                            toydata,
                                            ss_numnodes[subj_idx],
                                            fitinfo=fitinfo,
                                            prior=prior)

        ## update prior if graph has changed
        if not np.array_equal(uinvite_graph, prior_graphs[subj_idx]):
            changesmade += 1
            prior_graphs[subj_idx] = uinvite_graph
            priordict = rw.genGraphPrior(prior_graphs, prior_items)

for subj in range(len(subs)):
    g = nx.to_networkx_graph(prior_graphs[subj])
    g2 = nx.to_networkx_graph(rw.noHidden(ss_Xs[subj], ss_numnodes[subj]))
    nx.relabel_nodes(g, prior_items[subj], copy=False)
    nx.relabel_nodes(g2, prior_items[subj], copy=False)
    rw.write_csv([g, g2], subj + ".csv", subj)  # write multiple graphs