def get_plugins_as_table(name=None): """Retrieve a table listing all plugins and their requirements. Or just a single plugin if name is passed. Args: name str optional name of a specific plugin. Returns: table instance containing plugin descriptive data Raises: None """ table_body = [] header = TableRow([_('Title'), _('ID'), _('Requirements')], header=True) table_body.append(header) plugins_dict = dict([(pretty_function_name(p), p) for p in FunctionProvider.plugins]) if name is not None: if isinstance(name, basestring): # Add the names plugins_dict.update(dict([(p.__name__, p) for p in FunctionProvider.plugins])) msg = ('No plugin named "%s" was found. ' 'List of available plugins is: %s' % (name, ', '.join(plugins_dict.keys()))) if name not in plugins_dict: raise RuntimeError(msg) plugins_dict = {name: plugins_dict[name]} else: msg = ('get_plugins expects either no parameters or a string ' 'with the name of the plugin, you passed: ' '%s which is a %s' % (name, type(name))) raise Exception(msg) # Now loop through the plugins adding them to the table for key, func in plugins_dict.iteritems(): for requirement in requirements_collect(func): row = [] row.append(TableCell(get_function_title(func), header=True)) row.append(key) row.append(requirement) table_body.append(TableRow(row)) table = Table(table_body) table.caption = _('Available Impact Functions') return table
def test_column(self): """Test to retrieve all element in a column. """ table_body = [] header = TableRow(['header1', 'header2', 'header3', 'header4'], header=True) table_body.append(header) table_body.append(TableRow([1, 2, 3, 4])) table_body.append(TableRow(['a', 'b', 'c', 'd'])) table_body.append(TableRow(['x', 'y', 'z', 't'])) html_table = Table(table_body) expected_result1 = ['header1', 1, 'a', 'x'] expected_result2 = [2, 'b', 'y'] real_result1 = html_table.column(0, True) real_result2 = html_table.column(1) message1 = "Expected %s but got %s" % ( expected_result1, real_result1) message2 = "Expected %s but got %s" % ( expected_result2, real_result2) assert expected_result1 == real_result1, message1 assert expected_result2 == real_result2, message2
def run(self, layers): """Run the impact function. :param layers: List of layers expected to contain at least: H: Polygon layer of inundation areas E: Vector layer of roads :type layers: list :returns: A new line layer with inundated roads marked. :type: safe_layer """ target_field = self.parameters['target_field'] road_type_field = self.parameters['road_type_field'] threshold_min = self.parameters['min threshold [m]'] threshold_max = self.parameters['max threshold [m]'] if threshold_min > threshold_max: message = tr( 'The minimal threshold is greater then the maximal specified ' 'threshold. Please check the values.') raise GetDataError(message) # Extract data H = get_hazard_layer(layers) # Flood E = get_exposure_layer(layers) # Roads question = get_question( H.get_name(), E.get_name(), self) H = H.get_layer() E = E.get_layer() # reproject self.extent to the hazard projection hazard_crs = H.crs() hazard_authid = hazard_crs.authid() if hazard_authid == 'EPSG:4326': viewport_extent = self.extent else: geo_crs = QgsCoordinateReferenceSystem() geo_crs.createFromSrid(4326) viewport_extent = extent_to_geo_array( QgsRectangle(*self.extent), geo_crs, hazard_crs) # Align raster extent and viewport # assuming they are both in the same projection raster_extent = H.dataProvider().extent() clip_xmin = raster_extent.xMinimum() # clip_xmax = raster_extent.xMaximum() clip_ymin = raster_extent.yMinimum() # clip_ymax = raster_extent.yMaximum() if viewport_extent[0] > clip_xmin: clip_xmin = viewport_extent[0] if viewport_extent[1] > clip_ymin: clip_ymin = viewport_extent[1] # TODO: Why have these two clauses when they are not used? # Commenting out for now. # if viewport_extent[2] < clip_xmax: # clip_xmax = viewport_extent[2] # if viewport_extent[3] < clip_ymax: # clip_ymax = viewport_extent[3] height = ((viewport_extent[3] - viewport_extent[1]) / H.rasterUnitsPerPixelY()) height = int(height) width = ((viewport_extent[2] - viewport_extent[0]) / H.rasterUnitsPerPixelX()) width = int(width) raster_extent = H.dataProvider().extent() xmin = raster_extent.xMinimum() xmax = raster_extent.xMaximum() ymin = raster_extent.yMinimum() ymax = raster_extent.yMaximum() x_delta = (xmax - xmin) / H.width() x = xmin for i in range(H.width()): if abs(x - clip_xmin) < x_delta: # We have found the aligned raster boundary break x += x_delta _ = i y_delta = (ymax - ymin) / H.height() y = ymin for i in range(H.width()): if abs(y - clip_ymin) < y_delta: # We have found the aligned raster boundary break y += y_delta clip_extent = [x, y, x + width * x_delta, y + height * y_delta] # Clip and polygonize small_raster = clip_raster( H, width, height, QgsRectangle(*clip_extent)) (flooded_polygon_inside, flooded_polygon_outside) = polygonize_gdal( small_raster, threshold_min, threshold_max) # Filter geometry and data using the extent extent = QgsRectangle(*self.extent) request = QgsFeatureRequest() request.setFilterRect(extent) if flooded_polygon_inside is None: message = tr( 'There are no objects in the hazard layer with "value">%s.' 'Please check the value or use other extent.' % ( threshold_min, )) raise GetDataError(message) # reproject the flood polygons to exposure projection exposure_crs = E.crs() exposure_authid = exposure_crs.authid() if hazard_authid != exposure_authid: flooded_polygon_inside = reproject_vector_layer( flooded_polygon_inside, E.crs()) flooded_polygon_outside = reproject_vector_layer( flooded_polygon_outside, E.crs()) # Clip exposure by the extent # extent_as_polygon = QgsGeometry().fromRect(extent) # no need to clip since It is using a bbox request # line_layer = clip_by_polygon( # E, # extent_as_polygon # ) # Find inundated roads, mark them line_layer = split_by_polygon_in_out( E, flooded_polygon_inside, flooded_polygon_outside, target_field, 1, request) target_field_index = line_layer.dataProvider().\ fieldNameIndex(target_field) # Generate simple impact report epsg = get_utm_epsg(self.extent[0], self.extent[1]) output_crs = QgsCoordinateReferenceSystem(epsg) transform = QgsCoordinateTransform(E.crs(), output_crs) road_len = flooded_len = 0 # Length of roads roads_by_type = dict() # Length of flooded roads by types roads_data = line_layer.getFeatures() road_type_field_index = line_layer.fieldNameIndex(road_type_field) for road in roads_data: attributes = road.attributes() road_type = attributes[road_type_field_index] if road_type.__class__.__name__ == 'QPyNullVariant': road_type = tr('Other') geom = road.geometry() geom.transform(transform) length = geom.length() road_len += length if road_type not in roads_by_type: roads_by_type[road_type] = {'flooded': 0, 'total': 0} roads_by_type[road_type]['total'] += length if attributes[target_field_index] == 1: flooded_len += length roads_by_type[road_type]['flooded'] += length table_body = [ question, TableRow( [ tr('Road Type'), tr('Flooded in the threshold (m)'), tr('Total (m)')], header=True), TableRow([tr('All'), int(flooded_len), int(road_len)]), TableRow(tr('Breakdown by road type'), header=True)] for t, v in roads_by_type.iteritems(): table_body.append( TableRow([t, int(v['flooded']), int(v['total'])]) ) impact_summary = Table(table_body).toNewlineFreeString() map_title = tr('Roads inundated') style_classes = [ dict( label=tr('Not Inundated'), value=0, colour='#1EFC7C', transparency=0, size=0.5), dict( label=tr('Inundated'), value=1, colour='#F31A1C', transparency=0, size=0.5)] style_info = dict( target_field=target_field, style_classes=style_classes, style_type='categorizedSymbol') # Convert QgsVectorLayer to inasafe layer and return it line_layer = Vector( data=line_layer, name=tr('Flooded roads'), keywords={ 'impact_summary': impact_summary, 'map_title': map_title, 'target_field': target_field}, style_info=style_info) return line_layer
def run(self, layers): """Earthquake impact to buildings (e.g. from OpenStreetMap). :param layers: All the input layers (Hazard Layer and Exposure Layer) """ LOGGER.debug('Running earthquake building impact') # merely initialize building_value = 0 contents_value = 0 # Thresholds for mmi breakdown. t0 = self.parameters['low_threshold'] t1 = self.parameters['medium_threshold'] t2 = self.parameters['high_threshold'] # Class Attribute and Label. class_1 = {'label': tr('Low'), 'class': 1} class_2 = {'label': tr('Medium'), 'class': 2} class_3 = {'label': tr('High'), 'class': 3} # Extract data hazard_layer = get_hazard_layer(layers) # Depth exposure_layer = get_exposure_layer(layers) # Building locations question = get_question(hazard_layer.get_name(), exposure_layer.get_name(), self) # Define attribute name for hazard levels. hazard_attribute = 'mmi' # Determine if exposure data have NEXIS attributes. attribute_names = exposure_layer.get_attribute_names() if ('FLOOR_AREA' in attribute_names and 'BUILDING_C' in attribute_names and 'CONTENTS_C' in attribute_names): is_nexis = True else: is_nexis = False # Interpolate hazard level to building locations. interpolate_result = assign_hazard_values_to_exposure_data( hazard_layer, exposure_layer, attribute_name=hazard_attribute) # Extract relevant exposure data # attribute_names = interpolate_result.get_attribute_names() attributes = interpolate_result.get_data() interpolate_size = len(interpolate_result) # Calculate building impact lo = 0 me = 0 hi = 0 building_values = {} contents_values = {} for key in range(4): building_values[key] = 0 contents_values[key] = 0 for i in range(interpolate_size): # Classify building according to shake level # and calculate dollar losses if is_nexis: try: area = float(attributes[i]['FLOOR_AREA']) except (ValueError, KeyError): # print 'Got area', attributes[i]['FLOOR_AREA'] area = 0.0 try: building_value_density = float(attributes[i]['BUILDING_C']) except (ValueError, KeyError): # print 'Got bld value', attributes[i]['BUILDING_C'] building_value_density = 0.0 try: contents_value_density = float(attributes[i]['CONTENTS_C']) except (ValueError, KeyError): # print 'Got cont value', attributes[i]['CONTENTS_C'] contents_value_density = 0.0 building_value = building_value_density * area contents_value = contents_value_density * area try: x = float(attributes[i][hazard_attribute]) # MMI except TypeError: x = 0.0 if t0 <= x < t1: lo += 1 cls = 1 elif t1 <= x < t2: me += 1 cls = 2 elif t2 <= x: hi += 1 cls = 3 else: # Not reported for less than level t0 cls = 0 attributes[i][self.target_field] = cls if is_nexis: # Accumulate values in 1M dollar units building_values[cls] += building_value contents_values[cls] += contents_value if is_nexis: # Convert to units of one million dollars for key in range(4): building_values[key] = int(building_values[key] / 1000000) contents_values[key] = int(contents_values[key] / 1000000) if is_nexis: # Generate simple impact report for NEXIS type buildings table_body = [ question, TableRow([ tr('Hazard Level'), tr('Buildings Affected'), tr('Buildings value ($M)'), tr('Contents value ($M)') ], header=True), TableRow([ class_1['label'], format_int(lo), format_int(building_values[1]), format_int(contents_values[1]) ]), TableRow([ class_2['label'], format_int(me), format_int(building_values[2]), format_int(contents_values[2]) ]), TableRow([ class_3['label'], format_int(hi), format_int(building_values[3]), format_int(contents_values[3]) ]) ] else: # Generate simple impact report for unspecific buildings table_body = [ question, TableRow([tr('Hazard Level'), tr('Buildings Affected')], header=True), TableRow([class_1['label'], format_int(lo)]), TableRow([class_2['label'], format_int(me)]), TableRow([class_3['label'], format_int(hi)]) ] table_body.append(TableRow(tr('Notes'), header=True)) table_body.append( tr('High hazard is defined as shake levels greater ' 'than %i on the MMI scale.') % t2) table_body.append( tr('Medium hazard is defined as shake levels ' 'between %i and %i on the MMI scale.') % (t1, t2)) table_body.append( tr('Low hazard is defined as shake levels ' 'between %i and %i on the MMI scale.') % (t0, t1)) if is_nexis: table_body.append( tr('Values are in units of 1 million Australian ' 'Dollars')) impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary # Create style style_classes = [ dict(label=class_1['label'], value=class_1['class'], colour='#ffff00', transparency=1), dict(label=class_2['label'], value=class_2['class'], colour='#ffaa00', transparency=1), dict(label=class_3['label'], value=class_3['class'], colour='#ff0000', transparency=1) ] style_info = dict(target_field=self.target_field, style_classes=style_classes, style_type='categorizedSymbol') # For printing map purpose map_title = tr('Building affected by earthquake') legend_notes = tr('The level of the impact is according to the ' 'threshold the user input.') legend_units = tr('(mmi)') legend_title = tr('Impact level') # Create vector layer and return result_layer = Vector(data=attributes, projection=interpolate_result.get_projection(), geometry=interpolate_result.get_geometry(), name=tr('Estimated buildings affected'), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'target_field': self.target_field, 'statistics_type': self.statistics_type, 'statistics_classes': self.statistics_classes }, style_info=style_info) msg = 'Created vector layer %s' % str(result_layer) LOGGER.debug(msg) return result_layer
def run(self, layers=None): """Plugin for impact of population as derived by categorised hazard. :param layers: List of layers expected to contain * hazard_layer: Raster layer of categorised hazard * exposure_layer: Raster layer of population data Counts number of people exposed to each category of the hazard :returns: Map of population exposed to high category Table with number of people in each category """ self.validate() self.prepare(layers) thresholds = self.parameters['Categorical thresholds'] # Thresholds must contain 3 thresholds if len(thresholds) != 3: raise FunctionParametersError( 'The thresholds must consist of 3 values.') # Thresholds must monotonically increasing monotonically_increasing_flag = all( x < y for x, y in zip(thresholds, thresholds[1:])) if not monotonically_increasing_flag: raise FunctionParametersError( 'Each threshold should be larger than the previous.') # The 3 categories low_t = thresholds[0] medium_t = thresholds[1] high_t = thresholds[2] # Identify hazard and exposure layers hazard_layer = self.hazard # Categorised Hazard exposure_layer = self.exposure # Population Raster # Extract data as numeric arrays hazard_data = hazard_layer.get_data(nan=True) # Category no_data_warning = False if has_no_data(hazard_data): no_data_warning = True # Calculate impact as population exposed to each category exposure_data = exposure_layer.get_data(nan=True, scaling=True) if has_no_data(exposure_data): no_data_warning = True # Make 3 data for each zone. Get the value of the exposure if the # exposure is in the hazard zone, else just assign 0 low_exposure = numpy.where(hazard_data < low_t, exposure_data, 0) medium_exposure = numpy.where( (hazard_data >= low_t) & (hazard_data < medium_t), exposure_data, 0) high_exposure = numpy.where( (hazard_data >= medium_t) & (hazard_data <= high_t), exposure_data, 0) impacted_exposure = low_exposure + medium_exposure + high_exposure # Count totals total = int(numpy.nansum(exposure_data)) low_total = int(numpy.nansum(low_exposure)) medium_total = int(numpy.nansum(medium_exposure)) high_total = int(numpy.nansum(high_exposure)) total_impact = high_total + medium_total + low_total # Check for zero impact if total_impact == 0: table_body = [ self.question, TableRow( [tr('People impacted'), '%s' % format_int(total_impact)], header=True) ] message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(message) # Don't show digits less than a 1000 total = population_rounding(total) total_impact = population_rounding(total_impact) low_total = population_rounding(low_total) medium_total = population_rounding(medium_total) high_total = population_rounding(high_total) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] table_body = self._tabulate(high_total, low_total, medium_total, self.question, total_impact) impact_table = Table(table_body).toNewlineFreeString() table_body, total_needs = self._tabulate_notes(minimum_needs, table_body, total, total_impact, no_data_warning) impact_summary = Table(table_body).toNewlineFreeString() map_title = tr('People in each hazard areas (low, medium, high)') # Style for impact layer colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000' ] classes = create_classes(impacted_exposure.flat[:], len(colours)) interval_classes = humanize_class(classes) style_classes = [] for i in xrange(len(colours)): style_class = dict() if i == 1: label = create_label( interval_classes[i], tr('Low Population [%i people/cell]' % classes[i])) elif i == 4: label = create_label( interval_classes[i], tr('Medium Population [%i people/cell]' % classes[i])) elif i == 7: label = create_label( interval_classes[i], tr('High Population [%i people/cell]' % classes[i])) else: label = create_label(interval_classes[i]) style_class['label'] = label style_class['quantity'] = classes[i] if i == 0: transparency = 100 else: transparency = 0 style_class['transparency'] = transparency style_class['colour'] = colours[i] style_classes.append(style_class) style_info = dict(target_field=None, style_classes=style_classes, style_type='rasterStyle') # Create raster object and return raster_layer = Raster( data=impacted_exposure, projection=hazard_layer.get_projection(), geotransform=hazard_layer.get_geotransform(), name=tr('Population might %s') % (self.impact_function_manager.get_function_title(self).lower()), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'total_needs': total_needs }, style_info=style_info) self._impact = raster_layer return raster_layer
def run(self, layers): """Risk plugin for flood population evacuation. :param layers: List of layers expected to contain * hazard_layer : Vector polygon layer of flood depth * exposure_layer : Raster layer of population data on the same grid as hazard_layer Counts number of people exposed to areas identified as flood prone :returns: Map of population exposed to flooding Table with number of people evacuated and supplies required. :rtype: tuple """ # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Flood inundation exposure_layer = get_exposure_layer(layers) question = get_question( hazard_layer.get_name(), exposure_layer.get_name(), self) # Check that hazard is polygon type if not hazard_layer.is_vector: message = ( 'Input hazard %s was not a vector layer as expected ' % hazard_layer.get_name()) raise Exception(message) message = ( 'Input hazard must be a polygon layer. I got %s with layer type ' '%s' % (hazard_layer.get_name(), hazard_layer.get_geometry_name())) if not hazard_layer.is_polygon_data: raise Exception(message) # Run interpolation function for polygon2raster combined = assign_hazard_values_to_exposure_data( hazard_layer, exposure_layer, attribute_name='population') # Initialise attributes of output dataset with all attributes # from input polygon and a population count of zero new_attributes = hazard_layer.get_data() category_title = 'affected' # FIXME: Should come from keywords deprecated_category_title = 'FLOODPRONE' categories = {} for attr in new_attributes: attr[self.target_field] = 0 try: title = attr[category_title] except KeyError: try: title = attr['FLOODPRONE'] categories[title] = 0 except KeyError: pass # Count affected population per polygon, per category and total affected_population = 0 for attr in combined.get_data(): affected = False if 'affected' in attr: res = attr['affected'] if res is None: x = False else: x = bool(res) affected = x elif 'FLOODPRONE' in attr: # If there isn't an 'affected' attribute, res = attr['FLOODPRONE'] if res is not None: affected = res.lower() == 'yes' elif 'Affected' in attr: # Check the default attribute assigned for points # covered by a polygon res = attr['Affected'] if res is None: x = False else: x = res affected = x else: # assume that every polygon is affected (see #816) affected = True # there is no flood related attribute # message = ('No flood related attribute found in %s. ' # 'I was looking for either "Flooded", "FLOODPRONE" ' # 'or "Affected". The latter should have been ' # 'automatically set by call to ' # 'assign_hazard_values_to_exposure_data(). ' # 'Sorry I can\'t help more.') # raise Exception(message) if affected: # Get population at this location pop = float(attr['population']) # Update population count for associated polygon poly_id = attr['polygon_id'] new_attributes[poly_id][self.target_field] += pop # Update population count for each category if len(categories) > 0: try: title = new_attributes[poly_id][category_title] except KeyError: title = new_attributes[poly_id][ deprecated_category_title] categories[title] += pop # Update total affected_population += pop # Estimate number of people in need of evacuation evacuated = ( affected_population * self.parameters['evacuation_percentage'] / 100.0) affected_population, rounding = population_rounding_full( affected_population) total = int(numpy.sum(exposure_layer.get_data(nan=0, scaling=False))) # Don't show digits less than a 1000 total = population_rounding(total) evacuated, rounding_evacuated = population_rounding_full(evacuated) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map table_body = [ question, TableRow( [tr('People affected'), '%s*' % ( format_int(int(affected_population)))], header=True), TableRow( [TableCell( tr('* Number is rounded up to the nearest %s') % ( rounding), col_span=2)]), TableRow([tr('People needing evacuation'), '%s*' % ( format_int(int(evacuated)))], header=True), TableRow( [TableCell( tr('* Number is rounded up to the nearest %s') % ( rounding_evacuated), col_span=2)]), TableRow([tr('Evacuation threshold'), '%s%%' % format_int( self.parameters['evacuation_percentage'])], header=True), TableRow(tr( 'Map shows the number of people affected in each flood prone ' 'area')), TableRow(tr( 'Table below shows the weekly minimum needs for all ' 'evacuated people'))] total_needs = evacuated_population_needs( evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) impact_table = Table(table_body).toNewlineFreeString() table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append(TableRow( 'If yes, where are they located and how will we distribute ' 'them?')) table_body.append(TableRow( 'If no, where can we obtain additional relief items from and ' 'how will we transport them to here?')) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if in the area identified as ' '"Flood Prone"'), tr('Minimum needs are defined in BNPB regulation 7/2008')]) impact_summary = Table(table_body).toNewlineFreeString() # Create style # Define classes for legend for flooded population counts colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] population_counts = [x['population'] for x in new_attributes] classes = create_classes(population_counts, len(colours)) interval_classes = humanize_class(classes) # Define style info for output polygons showing population counts style_classes = [] for i in xrange(len(colours)): style_class = dict() style_class['label'] = create_label(interval_classes[i]) if i == 0: transparency = 0 style_class['min'] = 0 else: transparency = 0 style_class['min'] = classes[i - 1] style_class['transparency'] = transparency style_class['colour'] = colours[i] style_class['max'] = classes[i] style_classes.append(style_class) # Override style info with new classes and name style_info = dict(target_field=self.target_field, style_classes=style_classes, style_type='graduatedSymbol') # For printing map purpose map_title = tr('People affected by flood prone areas') legend_notes = tr('Thousand separator is represented by \'.\'') legend_units = tr('(people per polygon)') legend_title = tr('Population Count') # Create vector layer and return vector_layer = Vector( data=new_attributes, projection=hazard_layer.get_projection(), geometry=hazard_layer.get_geometry(), name=tr('People affected by flood prone areas'), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'target_field': self.target_field, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'affected_population': affected_population, 'total_population': total, 'total_needs': total_needs}, style_info=style_info) return vector_layer
def test_cell_header(self): """Test we can make a cell as a <th> element""" cell = TableCell('Foo', header=True) row = TableRow([cell]) table = Table(row) del table
def run(self, layers): """Flood impact to buildings (e.g. from Open Street Map) """ threshold = 1.0 # Flood threshold [m] # Extract data H = get_hazard_layer(layers) # Depth E = get_exposure_layer(layers) # Building locations question = get_question(H.get_name(), E.get_name(), self) # Determine attribute name for hazard levels if H.is_raster: mode = 'grid' hazard_attribute = 'depth' else: mode = 'regions' hazard_attribute = None # Interpolate hazard level to building locations I = assign_hazard_values_to_exposure_data( H, E, attribute_name=hazard_attribute) # Extract relevant exposure data attribute_names = I.get_attribute_names() attributes = I.get_data() N = len(I) # Calculate building impact count = 0 buildings = {} affected_buildings = {} for i in range(N): if mode == 'grid': # Get the interpolated depth x = float(attributes[i]['depth']) x = x >= threshold elif mode == 'regions': # Use interpolated polygon attribute atts = attributes[i] # FIXME (Ole): Need to agree whether to use one or the # other as this can be very confusing! # For now look for 'Flooded first' if 'Flooded' in atts: # E.g. from flood forecast # Assume that building is wet if inside polygon # as flagged by attribute Flooded res = atts['Flooded'] if res is None: x = False else: x = res elif 'FLOODPRONE' in atts: res = atts['FLOODPRONE'] if res is None: x = False else: x = res.lower() == 'yes' elif 'Affected' in atts: # Check the default attribute assigned for points # covered by a polygon res = atts['Affected'] if res is None: x = False else: x = res else: # there is no flood related attribute msg = ('No flood related attribute found in %s. ' 'I was looking fore either "Flooded", "FLOODPRONE" ' 'or "Affected". The latter should have been ' 'automatically set by call to ' 'assign_hazard_values_to_exposure_data(). ' 'Sorry I can\'t help more.') raise Exception(msg) else: msg = (tr('Unknown hazard type %s. ' 'Must be either "depth" or "grid"') % mode) raise Exception(msg) # Count affected buildings by usage type if available if 'type' in attribute_names: usage = attributes[i]['type'] else: usage = None if 'amenity' in attribute_names and (usage is None or usage == 0): usage = attributes[i]['amenity'] if 'building_t' in attribute_names and (usage is None or usage == 0): usage = attributes[i]['building_t'] if 'office' in attribute_names and (usage is None or usage == 0): usage = attributes[i]['office'] if 'tourism' in attribute_names and (usage is None or usage == 0): usage = attributes[i]['tourism'] if 'leisure' in attribute_names and (usage is None or usage == 0): usage = attributes[i]['leisure'] if 'building' in attribute_names and (usage is None or usage == 0): usage = attributes[i]['building'] if usage == 'yes': usage = 'building' #LOGGER.debug('usage ') if usage is not None and usage != 0: key = usage else: key = 'unknown' if key not in buildings: buildings[key] = 0 affected_buildings[key] = 0 # Count all buildings by type buildings[key] += 1 if x is True: # Count affected buildings by type affected_buildings[key] += 1 # Count total affected buildings count += 1 # Add calculated impact to existing attributes attributes[i][self.target_field] = x # Lump small entries and 'unknown' into 'other' category for usage in buildings.keys(): x = buildings[usage] if x < 25 or usage == 'unknown': if 'other' not in buildings: buildings['other'] = 0 affected_buildings['other'] = 0 buildings['other'] += x affected_buildings['other'] += affected_buildings[usage] del buildings[usage] del affected_buildings[usage] # Generate csv file of results ## fid = open('C:\dki_table_%s.csv' % H.get_name(), 'wb') ## fid.write('%s, %s, %s\n' % (tr('Building type'), ## tr('Temporarily closed'), ## tr('Total'))) ## fid.write('%s, %i, %i\n' % (tr('All'), count, N)) # Generate simple impact report table_body = [ question, TableRow([tr('Building type'), tr('Number flooded'), tr('Total')], header=True), TableRow([tr('All'), count, N]) ] ## fid.write('%s, %s, %s\n' % (tr('Building type'), ## tr('Temporarily closed'), ## tr('Total'))) school_closed = 0 hospital_closed = 0 # Generate break down by building usage type is available list_type_attribute = [ 'type', 'amenity', 'building_t', 'office', 'tourism', 'leisure', 'building' ] intersect_type = set(attribute_names) & set(list_type_attribute) if len(intersect_type) > 0: # Make list of building types building_list = [] for usage in buildings: building_type = usage.replace('_', ' ') # Lookup internationalised value if available building_type = tr(building_type) #============================================================== # print ('WARNING: %s could not be translated' # % building_type) #============================================================== # FIXME (Sunni) : I change affected_buildings[usage] to string # because it will be replace with   in html building_list.append([ building_type.capitalize(), str(affected_buildings[usage]), buildings[usage] ]) if building_type == 'school': school_closed = affected_buildings[usage] if building_type == 'hospital': hospital_closed = affected_buildings[usage] ## fid.write('%s, %i, %i\n' % (building_type.capitalize(), ## affected_buildings[usage], ## buildings[usage])) # Sort alphabetically building_list.sort() #table_body.append(TableRow([tr('Building type'), # tr('Temporarily closed'), # tr('Total')], header=True)) table_body.append( TableRow(tr('Breakdown by building type'), header=True)) for row in building_list: s = TableRow(row) table_body.append(s) ## fid.close() table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append( TableRow(tr('Are the critical facilities still ' 'open?'))) table_body.append( TableRow( tr('Which structures have warning capacity ' '(eg. sirens, speakers, etc.)?'))) table_body.append( TableRow(tr('Which buildings will be evacuation ' 'centres?'))) table_body.append( TableRow(tr('Where will we locate the operations ' 'centre?'))) table_body.append( TableRow( tr('Where will we locate warehouse and/or ' 'distribution centres?'))) if school_closed > 0: table_body.append( TableRow( tr('Where will the students from the %d' ' closed schools go to study?') % school_closed)) if hospital_closed > 0: table_body.append( TableRow( tr('Where will the patients from the %d' ' closed hospitals go for treatment ' 'and how will we transport them?') % hospital_closed)) table_body.append(TableRow(tr('Notes'), header=True)) assumption = tr('Buildings are said to be flooded when ') if mode == 'grid': assumption += tr('flood levels exceed %.1f m') % threshold else: assumption += tr('in regions marked as affected') table_body.append(assumption) impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary map_title = tr('Buildings inundated') # Create style style_classes = [ dict(label=tr('Not Flooded'), min=0, max=0, colour='#1EFC7C', transparency=0, size=1), dict(label=tr('Flooded'), min=1, max=1, colour='#F31A1C', transparency=0, size=1) ] style_info = dict(target_field=self.target_field, style_classes=style_classes) # Create vector layer and return V = Vector(data=attributes, projection=I.get_projection(), geometry=I.get_geometry(), name=tr('Estimated buildings affected'), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'target_field': self.target_field }, style_info=style_info) return V
class ITBFatalityFunctionConfigurable(FunctionProvider): """Indonesian Earthquake Fatality Model This model was developed by Institut Teknologi Bandung (ITB) and implemented by Dr. Hadi Ghasemi, Geoscience Australia. Reference: Indonesian Earthquake Building-Damage and Fatality Models and Post Disaster Survey Guidelines Development, Bali, 27-28 February 2012, 54pp. Algorithm: In this study, the same functional form as Allen (2009) is adopted to express fatality rate as a function of intensity (see Eq. 10 in the report). The Matlab built-in function (fminsearch) for Nelder-Mead algorithm is used to estimate the model parameters. The objective function (L2G norm) that is minimised during the optimisation is the same as the one used by Jaiswal et al. (2010). The coefficients used in the indonesian model are x=0.62275231, y=8.03314466, zeta=2.15 Allen, T. I., Wald, D. J., Earle, P. S., Marano, K. D., Hotovec, A. J., Lin, K., and Hearne, M., 2009. An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling, Bull. Earthq. Eng. 7, 701-718. Jaiswal, K., and Wald, D., 2010. An empirical model for global earthquake fatality estimation, Earthq. Spectra 26, 1017-1037. Caveats and limitations: The current model is the result of the above mentioned workshop and reflects the best available information. However, the current model has a number of issues listed below and is expected to evolve further over time. 1 - The model is based on limited number of observed fatality rates during 4 past fatal events. 2 - The model clearly over-predicts the fatality rates at intensities higher than VIII. 3 - The model only estimates the expected fatality rate for a given intensity level; however the associated uncertainty for the proposed model is not addressed. 4 - There are few known mistakes in developing the current model: - rounding MMI values to the nearest 0.5, - Implementing Finite-Fault models of candidate events, and - consistency between selected GMPEs with those in use by BMKG. These issues will be addressed by ITB team in the final report. :author Hadi Ghasemi :rating 3 :param requires category=='hazard' and \ subcategory=='earthquake' and \ layertype=='raster' and \ unit=='MMI' :param requires category=='exposure' and \ subcategory=='population' and \ layertype=='raster' """ title = tr('Die or be displaced') defaults = get_defaults() parameters = OrderedDict([ ('x', 0.62275231), ('y', 8.03314466), # Model coefficients # Rates of people displaced for each MMI level ('displacement_rate', { 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 1.0, 7: 1.0, 8: 1.0, 9: 1.0, 10: 1.0 }), # Threshold below which layer should be transparent ('tolerance', 0.01), ('calculate_displaced_people', True), ('postprocessors', OrderedDict([ ('Gender', { 'on': True }), ('Age', { 'on': True, 'params': OrderedDict([('youth_ratio', defaults['YOUTH_RATIO']), ('adult_ratio', defaults['ADULT_RATIO']), ('elder_ratio', defaults['ELDER_RATIO'])]) }) ])) ]) def run(self, layers): """Indonesian Earthquake Fatality Model Input layers: List of layers expected to contain H: Raster layer of MMI ground shaking P: Raster layer of population density """ # Establish model coefficients x = self.parameters['x'] y = self.parameters['y'] # Define percentages of people being displaced at each mmi level displacement_rate = self.parameters['displacement_rate'] # Tolerance for transparency tolerance = self.parameters['tolerance'] # Extract input layers intensity = get_hazard_layer(layers) population = get_exposure_layer(layers) question = get_question(intensity.get_name(), population.get_name(), self) # Extract data grids H = intensity.get_data() # Ground Shaking P = population.get_data(scaling=True) # Population Density # Calculate population affected by each MMI level # FIXME (Ole): this range is 2-9. Should 10 be included? mmi_range = range(2, 10) number_of_exposed = {} number_of_displaced = {} number_of_fatalities = {} # Calculate fatality rates for observed Intensity values (H # based on ITB power model R = numpy.zeros(H.shape) for mmi in mmi_range: # Identify cells where MMI is in class i mask = (H > mmi - 0.5) * (H <= mmi + 0.5) # Count population affected by this shake level I = numpy.where(mask, P, 0) # Calculate expected number of fatalities per level fatality_rate = numpy.power(10.0, x * mmi - y) F = fatality_rate * I # Calculate expected number of displaced people per level try: D = displacement_rate[mmi] * I except KeyError, e: msg = 'mmi = %i, I = %s, Error msg: %s' % (mmi, str(I), str(e)) raise InaSAFEError(msg) # Adjust displaced people to disregard fatalities. # Set to zero if there are more fatalities than displaced. D = numpy.where(D > F, D - F, 0) # Sum up numbers for map R += D # Displaced # Generate text with result for this study # This is what is used in the real time system exposure table number_of_exposed[mmi] = numpy.nansum(I.flat) number_of_displaced[mmi] = numpy.nansum(D.flat) number_of_fatalities[mmi] = numpy.nansum(F.flat) # Set resulting layer to NaN when less than a threshold. This is to # achieve transparency (see issue #126). R[R < tolerance] = numpy.nan # Total statistics total = int(round(numpy.nansum(P.flat) / 1000) * 1000) # Compute number of fatalities fatalities = int( round(numpy.nansum(number_of_fatalities.values()) / 1000)) * 1000 # Compute number of people displaced due to building collapse displaced = int( round(numpy.nansum(number_of_displaced.values()) / 1000)) * 1000 # Generate impact report table_body = [question] # Add total fatality estimate s = str(int(fatalities)).rjust(10) table_body.append( TableRow([tr('Number of fatalities'), s], header=True)) if self.parameters['calculate_displaced_people']: # Add total estimate of people displaced s = str(int(displaced)).rjust(10) table_body.append( TableRow([tr('Number of people displaced'), s], header=True)) else: displaced = 0 # Add estimate of total population in area s = str(int(total)).rjust(10) table_body.append( TableRow([tr('Total number of people'), s], header=True)) # Calculate estimated needs based on BNPB Perka 7/2008 minimum bantuan rice = displaced * 2.8 drinking_water = displaced * 17.5 water = displaced * 67 family_kits = displaced / 5 toilets = displaced / 20 # Generate impact report for the pdf map table_body = [ question, TableRow([tr('Fatalities'), '%i' % fatalities], header=True), TableRow([tr('People displaced'), '%i' % displaced], header=True), TableRow( tr('Map shows density estimate of ' 'displaced population')), TableRow([tr('Needs per week'), tr('Total')], header=True), [tr('Rice [kg]'), int(rice)], [tr('Drinking Water [l]'), int(drinking_water)], [tr('Clean Water [l]'), int(water)], [tr('Family Kits'), int(family_kits)], [tr('Toilets'), int(toilets)] ] impact_table = Table(table_body).toNewlineFreeString() table_body.append(TableRow(tr('Action Checklist:'), header=True)) if fatalities > 0: table_body.append( tr('Are there enough victim identification ' 'units available for %i people?') % fatalities) if displaced > 0: table_body.append( tr('Are there enough shelters and relief items ' 'available for %i people?') % displaced) table_body.append( TableRow( tr('If yes, where are they located and ' 'how will we distribute them?'))) table_body.append( TableRow( tr('If no, where can we obtain ' 'additional relief items from and ' 'how will we transport them?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population: %i') % total, tr('People are considered to be displaced if ' 'they experience and survive a shake level' 'of more than 5 on the MMI scale '), tr('Minimum needs are defined in BNPB ' 'regulation 7/2008') ]) impact_summary = Table(table_body).toNewlineFreeString() map_title = tr('People in need of evacuation') table_body.append(TableRow(tr('Notes'), header=True)) table_body.append( tr('Fatality model is from ' 'Institute of Teknologi Bandung 2012.')) table_body.append(tr('Population numbers rounded to nearest 1000.')) impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary map_title = tr('Earthquake impact to population') # Create style info dynamically classes = numpy.linspace(numpy.nanmin(R.flat[:]), numpy.nanmax(R.flat[:]), 5) style_classes = [ dict(colour='#EEFFEE', quantity=classes[0], transparency=100, label=tr('%.2f people/cell') % classes[0]), dict(colour='#FFFF7F', quantity=classes[1], transparency=30), dict(colour='#E15500', quantity=classes[2], transparency=30, label=tr('%.2f people/cell') % classes[2]), dict(colour='#E4001B', quantity=classes[3], transparency=30), dict(colour='#730000', quantity=classes[4], transparency=30, label=tr('%.2f people/cell') % classes[4]) ] style_info = dict(target_field=None, style_classes=style_classes) # Create new layer and return L = Raster(R, projection=population.get_projection(), geotransform=population.get_geotransform(), keywords={ 'impact_summary': impact_summary, 'total_population': total, 'total_fatalities': fatalities, 'impact_table': impact_table, 'map_title': map_title }, name=tr('Estimated displaced population'), style_info=style_info) # Maybe return a shape file with contours instead return L
def run(self, layers=None): """Run volcano population evacuation Impact Function. :param layers: List of layers expected to contain where two layers should be present. * hazard_layer: Vector polygon layer of volcano impact zones * exposure_layer: Raster layer of population data on the same grid as hazard_layer Counts number of people exposed to volcano event. :returns: Map of population exposed to the volcano hazard zone. The returned dict will include a table with number of people evacuated and supplies required. :rtype: dict :raises: * Exception - When hazard layer is not vector layer * RadiiException - When radii are not valid (they need to be monotonically increasing) """ self.validate() self.prepare(layers) # Parameters hazard_zone_attribute = self.parameters['hazard zone attribute'] name_attribute = self.parameters['volcano name attribute'] # Identify hazard and exposure layers hazard_layer = self.hazard exposure_layer = self.exposure nan_warning = False if has_no_data(exposure_layer.get_data(nan=True)): nan_warning = True # Input checks if not hazard_layer.is_polygon_data: msg = ('Input hazard must be a polygon layer. I got %s with ' 'layer type %s' % (hazard_layer.get_name(), hazard_layer.get_geometry_name())) raise Exception(msg) # Check if hazard_zone_attribute exists in hazard_layer if hazard_zone_attribute not in hazard_layer.get_attribute_names(): msg = ('Hazard data %s did not contain expected attribute %s ' % ( hazard_layer.get_name(), hazard_zone_attribute)) # noinspection PyExceptionInherit raise InaSAFEError(msg) features = hazard_layer.get_data() category_header = tr('Category') hazard_zone_categories = list( set(hazard_layer.get_data(hazard_zone_attribute))) # Get names of volcanoes considered if name_attribute in hazard_layer.get_attribute_names(): volcano_name_list = [] # Run through all polygons and get unique names for row in features: volcano_name_list.append(row[name_attribute]) volcano_names = '' for hazard_zone in volcano_name_list: volcano_names += '%s, ' % hazard_zone volcano_names = volcano_names[:-2] # Strip trailing ', ' else: volcano_names = tr('Not specified in data') # Find the target field name that has no conflict with default target attribute_names = hazard_layer.get_attribute_names() new_target_field = get_non_conflicting_attribute_name( self.target_field, attribute_names) self.target_field = new_target_field # Run interpolation function for polygon2raster interpolated_layer, covered_exposure_layer = \ assign_hazard_values_to_exposure_data( hazard_layer, exposure_layer, attribute_name=self.target_field) # Initialise total affected per category affected_population = {} for hazard_zone in hazard_zone_categories: affected_population[hazard_zone] = 0 # Count affected population per polygon and total for row in interpolated_layer.get_data(): # Get population at this location population = row[self.target_field] if not numpy.isnan(population): population = float(population) # Update population count for this category category = row[hazard_zone_attribute] affected_population[category] += population # Count totals total_population = population_rounding( int(numpy.nansum(exposure_layer.get_data()))) # Count number and cumulative for each zone total_affected_population = 0 cumulative_affected_population = {} for hazard_zone in hazard_zone_categories: population = int(affected_population.get(hazard_zone, 0)) total_affected_population += population cumulative_affected_population[hazard_zone] = \ total_affected_population minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map blank_cell = '' table_body = [ self.question, TableRow( [tr('Volcanoes considered'), '%s' % volcano_names, blank_cell], header=True), TableRow( [tr('People needing evacuation'), '%s' % format_int( population_rounding(total_affected_population)), blank_cell], header=True), TableRow( [category_header, tr('Total'), tr('Cumulative')], header=True)] for hazard_zone in hazard_zone_categories: table_body.append( TableRow( [hazard_zone, format_int( population_rounding( affected_population[hazard_zone])), format_int( population_rounding( cumulative_affected_population[hazard_zone]))])) table_body.extend([ TableRow(tr( 'Map shows the number of people affected in each of volcano ' 'hazard polygons.'))]) total_needs = evacuated_population_needs( total_affected_population, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) impact_table = Table(table_body).toNewlineFreeString() # Extend impact report for on-screen display table_body.extend( [TableRow(tr('Notes'), header=True), tr('Total population %s in the exposure layer') % format_int( total_population), tr('People need evacuation if they are within the ' 'volcanic hazard zones.')]) if nan_warning: table_body.extend([ tr('The population layer contained `no data`. This missing ' 'data was carried through to the impact layer.'), tr('`No data` values in the impact layer were treated as 0 ' 'when counting the affected or total population.') ]) impact_summary = Table(table_body).toNewlineFreeString() # check for zero impact if total_affected_population == 0: table_body = [ self.question, TableRow( [tr('People needing evacuation'), '%s' % format_int(total_affected_population), blank_cell], header=True)] message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(message) # Create style colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] classes = create_classes( covered_exposure_layer.get_data().flat[:], len(colours)) interval_classes = humanize_class(classes) # Define style info for output polygons showing population counts style_classes = [] for i in xrange(len(colours)): style_class = dict() style_class['label'] = create_label(interval_classes[i]) if i == 1: label = create_label( interval_classes[i], tr('Low Population [%i people/cell]' % classes[i])) elif i == 4: label = create_label( interval_classes[i], tr('Medium Population [%i people/cell]' % classes[i])) elif i == 7: label = create_label( interval_classes[i], tr('High Population [%i people/cell]' % classes[i])) else: label = create_label(interval_classes[i]) if i == 0: transparency = 100 else: transparency = 0 style_class['label'] = label style_class['quantity'] = classes[i] style_class['colour'] = colours[i] style_class['transparency'] = transparency style_classes.append(style_class) # Override style info with new classes and name style_info = dict( target_field=None, style_classes=style_classes, style_type='rasterStyle') # For printing map purpose map_title = tr('People affected by volcanic hazard zone') legend_notes = tr('Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Population') # Create vector layer and return impact_layer = Raster( data=covered_exposure_layer.get_data(), projection=covered_exposure_layer.get_projection(), geotransform=covered_exposure_layer.get_geotransform(), name=tr('People affected by volcanic hazard zone'), keywords={'impact_summary': impact_summary, 'impact_table': impact_table, 'target_field': self.target_field, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'total_needs': total_needs}, style_info=style_info) self._impact = impact_layer return impact_layer
def run(self, layers): """Risk plugin for flood population evacuation Input layers: List of layers expected to contain my_hazard: Raster layer of flood depth my_exposure: Raster layer of population data on the same grid as my_hazard Counts number of people exposed to flood levels exceeding specified threshold. Return Map of population exposed to flood levels exceeding the threshold Table with number of people evacuated and supplies required """ # Identify hazard and exposure layers my_hazard = get_hazard_layer(layers) # Flood inundation [m] my_exposure = get_exposure_layer(layers) question = get_question(my_hazard.get_name(), my_exposure.get_name(), self) # Determine depths above which people are regarded affected [m] # Use thresholds from inundation layer if specified thresholds = self.parameters['thresholds [m]'] verify(isinstance(thresholds, list), 'Expected thresholds to be a list. Got %s' % str(thresholds)) # Extract data as numeric arrays D = my_hazard.get_data(nan=0.0) # Depth # Calculate impact as population exposed to depths > max threshold P = my_exposure.get_data(nan=0.0, scaling=True) # Calculate impact to intermediate thresholds counts = [] # merely initialize my_impact = None for i, lo in enumerate(thresholds): if i == len(thresholds) - 1: # The last threshold my_impact = M = numpy.where(D >= lo, P, 0) else: # Intermediate thresholds hi = thresholds[i + 1] M = numpy.where((D >= lo) * (D < hi), P, 0) # Count val = int(numpy.sum(M)) # Don't show digits less than a 1000 val = round_thousand(val) counts.append(val) # Count totals evacuated = counts[-1] total = int(numpy.sum(P)) # Don't show digits less than a 1000 total = round_thousand(total) # Calculate estimated minimum needs # The default value of each logistic is based on BNPB Perka 7/2008 # minimum bantuan minimum_needs = self.parameters['minimum needs'] tot_needs = evacuated_population_weekly_needs(evacuated, minimum_needs) # Generate impact report for the pdf map # noinspection PyListCreation table_body = [ question, TableRow([(tr('People in %.1f m of water') % thresholds[-1]), '%s%s' % (format_int(evacuated), ('*' if evacuated >= 1000 else ''))], header=True), TableRow(tr('* Number is rounded to the nearest 1000'), header=False), TableRow(tr('Map shows population density needing evacuation')), TableRow( tr('Table below shows the weekly minium needs for all ' 'evacuated people')), TableRow([tr('Needs per week'), tr('Total')], header=True), [tr('Rice [kg]'), format_int(tot_needs['rice'])], [ tr('Drinking Water [l]'), format_int(tot_needs['drinking_water']) ], [tr('Clean Water [l]'), format_int(tot_needs['water'])], [tr('Family Kits'), format_int(tot_needs['family_kits'])], [tr('Toilets'), format_int(tot_needs['toilets'])] ] table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append( TableRow( tr('If yes, where are they located and how ' 'will we distribute them?'))) table_body.append( TableRow( tr('If no, where can we obtain additional relief items from and how ' 'will we transport them to here?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if flood levels exceed %(eps).1f m') % { 'eps': thresholds[-1] }, tr('Minimum needs are defined in BNPB regulation 7/2008'), tr('All values are rounded up to the nearest integer in order to ' 'avoid representing human lives as fractionals.') ]) if len(counts) > 1: table_body.append(TableRow(tr('Detailed breakdown'), header=True)) for i, val in enumerate(counts[:-1]): s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i') % { 'lo': thresholds[i], 'hi': thresholds[i + 1], 'val': format_int(val) }) table_body.append(TableRow(s, header=False)) # Result impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary # check for zero impact if numpy.nanmax(my_impact) == 0 == numpy.nanmin(my_impact): table_body = [ question, TableRow([(tr('People in %.1f m of water') % thresholds[-1]), '%s' % format_int(evacuated)], header=True) ] my_message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(my_message) # Create style colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000' ] classes = create_classes(my_impact.flat[:], len(colours)) interval_classes = humanize_class(classes) style_classes = [] for i in xrange(len(colours)): style_class = dict() if i == 1: label = create_label(interval_classes[i], 'Low') elif i == 4: label = create_label(interval_classes[i], 'Medium') elif i == 7: label = create_label(interval_classes[i], 'High') else: label = create_label(interval_classes[i]) style_class['label'] = label style_class['quantity'] = classes[i] if i == 0: transparency = 100 else: transparency = 0 style_class['transparency'] = transparency style_class['colour'] = colours[i] style_classes.append(style_class) style_info = dict(target_field=None, style_classes=style_classes, style_type='rasterStyle') # For printing map purpose map_title = tr('People in need of evacuation') legend_notes = tr('Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Population density') # Create raster object and return R = Raster(my_impact, projection=my_hazard.get_projection(), geotransform=my_hazard.get_geotransform(), name=tr('Population which %s') % (get_function_title(self).lower()), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title }, style_info=style_info) return R
def run(self, layers): """Plugin for impact of population as derived by categorised hazard. :param layers: List of layers expected to contain * hazard_layer: Raster layer of categorised hazard * exposure_layer: Raster layer of population data Counts number of people exposed to each category of the hazard :returns: Map of population exposed to high category Table with number of people in each category """ # The 3 category high_t = self.parameters['Categorical thresholds'][2] medium_t = self.parameters['Categorical thresholds'][1] low_t = self.parameters['Categorical thresholds'][0] # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Categorised Hazard exposure_layer = get_exposure_layer(layers) # Population Raster question = get_question( hazard_layer.get_name(), exposure_layer.get_name(), self) # Extract data as numeric arrays C = hazard_layer.get_data(nan=0.0) # Category # Calculate impact as population exposed to each category P = exposure_layer.get_data(nan=0.0, scaling=True) H = numpy.where(C <= high_t, P, 0) M = numpy.where(C < medium_t, P, 0) L = numpy.where(C < low_t, P, 0) # Count totals total = int(numpy.sum(P)) high = int(numpy.sum(H)) - int(numpy.sum(M)) medium = int(numpy.sum(M)) - int(numpy.sum(L)) low = int(numpy.sum(L)) total_impact = high + medium + low # Don't show digits less than a 1000 total = population_rounding(total) total_impact = population_rounding(total_impact) high = population_rounding(high) medium = population_rounding(medium) low = population_rounding(low) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map table_body = [ question, TableRow([tr('People impacted '), '%s' % format_int(total_impact)], header=True), TableRow([tr('People in high hazard area '), '%s' % format_int(high)], header=True), TableRow([tr('People in medium hazard area '), '%s' % format_int(medium)], header=True), TableRow([tr('People in low hazard area'), '%s' % format_int(low)], header=True)] impact_table = Table(table_body).toNewlineFreeString() # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Map shows population count in high or medium hazard area'), tr('Total population: %s') % format_int(total), TableRow(tr( 'Table below shows the minimum needs for all ' 'affected people'))]) total_needs = evacuated_population_needs( total_impact, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) impact_summary = Table(table_body).toNewlineFreeString() map_title = tr('People in high hazard areas') # Generate 8 equidistant classes across the range of flooded population # 8 is the number of classes in the predefined flood population style # as imported # noinspection PyTypeChecker classes = numpy.linspace( numpy.nanmin(M.flat[:]), numpy.nanmax(M.flat[:]), 8) # Modify labels in existing flood style to show quantities style_classes = style_info['style_classes'] style_classes[1]['label'] = tr('Low [%i people/cell]') % classes[1] style_classes[4]['label'] = tr('Medium [%i people/cell]') % classes[4] style_classes[7]['label'] = tr('High [%i people/cell]') % classes[7] style_info['legend_title'] = tr('Population Count') # Create raster object and return raster_layer = Raster( M, projection=hazard_layer.get_projection(), geotransform=hazard_layer.get_geotransform(), name=tr('Population which %s') % ( get_function_title(self).lower()), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'total_needs': total_needs}, style_info=style_info) return raster_layer
def run(self, layers): """Impact function for flood population evacuation Input layers: List of layers expected to contain H: Raster layer of flood depth P: Raster layer of population data on the same grid as H Counts number of people exposed to flood levels exceeding specified threshold. Return Map of population exposed to flood levels exceeding the threshold Table with number of people evacuated and supplies required """ # Identify hazard and exposure layers inundation = get_hazard_layer(layers) # Flood inundation [m] population = get_exposure_layer(layers) question = get_question(inundation.get_name(), population.get_name(), self) # Determine depths above which people are regarded affected [m] # Use thresholds from inundation layer if specified threshold = self.parameters['threshold'] # Extract data as numeric arrays D = inundation.get_data(nan=0.0) # Depth # Calculate impact as population exposed to depths > max threshold P = population.get_data(nan=0.0, scaling=True) # Create new array with positive population counts only for # pixels where inundation exceeds threshold. I = numpy.where(D >= threshold, P, 0) # Count population thus exposed to inundation evacuated = int(numpy.sum(I)) # Count total population total = int(numpy.sum(P)) # Calculate estimated needs based on BNPB Perka 7/2008 minimum bantuan # 400g per person per day rice = int(evacuated * 2.8) # 2.5L per person per day drinking_water = int(evacuated * 17.5) # 15L per person per day water = int(evacuated * 105) # assume 5 people per family (not in perka) family_kits = int(evacuated / 5) # 20 people per toilet toilets = int(evacuated / 20) # Generate impact report for the pdf map table_body = [ question, TableRow([('People in %.1f m of water' % threshold), '%s' % evacuated], header=True), TableRow('Map shows population density needing ' 'evacuation'), TableRow(['Needs per week', 'Total'], header=True), ['Rice [kg]', rice], ['Drinking Water [l]', drinking_water], ['Clean Water [l]', water], ['Family Kits', family_kits], ['Toilets', toilets] ] impact_table = Table(table_body).toNewlineFreeString() # Extend impact report for on-screen display table_body.extend([ TableRow('Notes', header=True), 'Total population: %s' % total, 'People need evacuation if flood levels ' 'exceed %(eps).1f m' % { 'eps': threshold }, 'Minimum needs are defined in BNPB ' 'regulation 7/2008' ]) impact_summary = Table(table_body).toNewlineFreeString() map_title = 'People in need of evacuation' # Generate 8 equidistant classes across the range of flooded population # 8 is the number of classes in the predefined flood population style # as imported classes = numpy.linspace(numpy.nanmin(I.flat[:]), numpy.nanmax(I.flat[:]), 8) # Define 8 colours - on for each class colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000' ] # Create style associating each class with a colour and transparency. style_classes = [] for i, cls in enumerate(classes): if i == 0: # Smallest class has 100% transparency transparency = 100 else: # All the others are solid transparency = 0 # Create labels for three of the classes if i == 1: label = 'Low [%.2f people/cell]' % cls elif i == 4: label = 'Medium [%.2f people/cell]' % cls elif i == 7: label = 'High [%.2f people/cell]' % cls else: label = '' # Style dictionary for this class d = dict(colour=colours[i], quantity=cls, transparency=transparency, label=label) style_classes.append(d) # Create style info for impact layer style_info = dict( target_field=None, # Only for vector data legend_title='Population Density', style_classes=style_classes) # Create raster object and return R = Raster(I, projection=inundation.get_projection(), geotransform=inundation.get_geotransform(), name='Population which %s' % get_function_title(self), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title }, style_info=style_info) return R
def run(self, layers): """Risk plugin for volcano population evacuation Input layers: List of layers expected to contain my_hazard: Vector polygon layer of volcano impact zones my_exposure: Raster layer of population data on the same grid as my_hazard Counts number of people exposed to volcano event. Return Map of population exposed to the volcano hazard zone. Table with number of people evacuated and supplies required. """ # Identify hazard and exposure layers my_hazard = get_hazard_layer(layers) # Volcano KRB my_exposure = get_exposure_layer(layers) question = get_question(my_hazard.get_name(), my_exposure.get_name(), self) # Input checks if not my_hazard.is_vector: msg = ('Input hazard %s was not a vector layer as expected ' % my_hazard.get_name()) raise Exception(msg) msg = ('Input hazard must be a polygon or point layer. I got %s with ' 'layer type %s' % (my_hazard.get_name(), my_hazard.get_geometry_name())) if not (my_hazard.is_polygon_data or my_hazard.is_point_data): raise Exception(msg) if my_hazard.is_point_data: # Use concentric circles radii = self.parameters['distance [km]'] centers = my_hazard.get_geometry() attributes = my_hazard.get_data() rad_m = [x * 1000 for x in radii] # Convert to meters my_hazard = make_circular_polygon(centers, rad_m, attributes=attributes) category_title = 'Radius' category_header = tr('Distance [km]') category_names = radii name_attribute = 'NAME' # As in e.g. the Smithsonian dataset else: # Use hazard map category_title = 'KRB' category_header = tr('Category') # FIXME (Ole): Change to English and use translation system category_names = [ 'Kawasan Rawan Bencana III', 'Kawasan Rawan Bencana II', 'Kawasan Rawan Bencana I' ] name_attribute = 'GUNUNG' # As in e.g. BNPB hazard map attributes = my_hazard.get_data() # Get names of volcanos considered if name_attribute in my_hazard.get_attribute_names(): D = {} for att in my_hazard.get_data(): # Run through all polygons and get unique names D[att[name_attribute]] = None volcano_names = '' for name in D: volcano_names += '%s, ' % name volcano_names = volcano_names[:-2] # Strip trailing ', ' else: volcano_names = tr('Not specified in data') if not category_title in my_hazard.get_attribute_names(): msg = ('Hazard data %s did not contain expected ' 'attribute %s ' % (my_hazard.get_name(), category_title)) raise InaSAFEError(msg) # Run interpolation function for polygon2raster P = assign_hazard_values_to_exposure_data(my_hazard, my_exposure, attribute_name='population') # Initialise attributes of output dataset with all attributes # from input polygon and a population count of zero new_attributes = my_hazard.get_data() categories = {} for attr in new_attributes: attr[self.target_field] = 0 cat = attr[category_title] categories[cat] = 0 # Count affected population per polygon and total evacuated = 0 for attr in P.get_data(): # Get population at this location pop = float(attr['population']) # Update population count for associated polygon poly_id = attr['polygon_id'] new_attributes[poly_id][self.target_field] += pop # Update population count for each category cat = new_attributes[poly_id][category_title] categories[cat] += pop # Count totals total = int(numpy.sum(my_exposure.get_data(nan=0))) # Don't show digits less than a 1000 total = round_thousand(total) # Count number and cumulative for each zone cum = 0 pops = {} cums = {} for name in category_names: if category_title == 'Radius': key = name * 1000 # Convert to meters else: key = name # prevent key error pop = int(categories.get(key, 0)) pop = round_thousand(pop) cum += pop cum = round_thousand(cum) pops[name] = pop cums[name] = cum # Use final accumulation as total number needing evac evacuated = cum # Calculate estimated needs based on BNPB Perka # 7/2008 minimum bantuan # FIXME (Ole): Refactor into one function to be shared rice = int(evacuated * 2.8) drinking_water = int(evacuated * 17.5) water = int(evacuated * 67) family_kits = int(evacuated / 5) toilets = int(evacuated / 20) # Generate impact report for the pdf map blank_cell = '' table_body = [ question, TableRow( [tr('Volcanos considered'), '%s' % volcano_names, blank_cell], header=True), TableRow([ tr('People needing evacuation'), '%s' % format_int(evacuated), blank_cell ], header=True), TableRow( [category_header, tr('Total'), tr('Cumulative')], header=True) ] for name in category_names: table_body.append( TableRow( [name, format_int(pops[name]), format_int(cums[name])])) table_body.extend([ TableRow( tr('Map shows population affected in ' 'each of volcano hazard polygons.')), TableRow([tr('Needs per week'), tr('Total'), blank_cell], header=True), [tr('Rice [kg]'), format_int(rice), blank_cell], [tr('Drinking Water [l]'), format_int(drinking_water), blank_cell], [tr('Clean Water [l]'), format_int(water), blank_cell], [tr('Family Kits'), format_int(family_kits), blank_cell], [tr('Toilets'), format_int(toilets), blank_cell] ]) impact_table = Table(table_body).toNewlineFreeString() # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population %s in the exposure layer') % format_int(total), tr('People need evacuation if they are within the ' 'volcanic hazard zones.') ]) population_counts = [x[self.target_field] for x in new_attributes] impact_summary = Table(table_body).toNewlineFreeString() # check for zero impact if numpy.nanmax(population_counts) == 0 == numpy.nanmin( population_counts): table_body = [ question, TableRow([ tr('People needing evacuation'), '%s' % format_int(evacuated), blank_cell ], header=True) ] my_message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(my_message) # Create style colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000' ] classes = create_classes(population_counts, len(colours)) interval_classes = humanize_class(classes) # Define style info for output polygons showing population counts style_classes = [] for i in xrange(len(colours)): style_class = dict() style_class['label'] = create_label(interval_classes[i]) if i == 0: transparency = 100 style_class['min'] = 0 else: transparency = 30 style_class['min'] = classes[i - 1] style_class['transparency'] = transparency style_class['colour'] = colours[i] style_class['max'] = classes[i] style_classes.append(style_class) # Override style info with new classes and name style_info = dict(target_field=self.target_field, style_classes=style_classes, style_type='graduatedSymbol') # For printing map purpose map_title = tr('People affected by volcanic hazard zone') legend_notes = tr('Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people)') legend_title = tr('Population count') # Create vector layer and return V = Vector(data=new_attributes, projection=my_hazard.get_projection(), geometry=my_hazard.get_geometry(as_geometry_objects=True), name=tr('Population affected by volcanic hazard zone'), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'target_field': self.target_field, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title }, style_info=style_info) return V
def run(self, layers): """Impact plugin for hazard impact """ # Extract data H = get_hazard_layer(layers) # Value E = get_exposure_layer(layers) # Building locations question = get_question(H.get_name(), E.get_name(), self) # Interpolate hazard level to building locations H = assign_hazard_values_to_exposure_data(H, E, attribute_name='hazard_lev', mode='constant') # Extract relevant numerical data coordinates = H.get_geometry() category = H.get_data() N = len(category) # List attributes to carry forward to result layer #attributes = E.get_attribute_names() # Calculate building impact according to guidelines count2 = 0 count1 = 0 count0 = 0 building_impact = [] for i in range(N): # Get category value val = float(category[i]['hazard_lev']) # Classify buildings according to value ## if val >= 2.0 / 3: ## affected = 2 ## count2 += 1 ## elif 1.0 / 3 <= val < 2.0 / 3: ## affected = 1 ## count1 += 1 ## else: ## affected = 0 ## count0 += 1 ## FIXME it would be good if the affected were words not numbers ## FIXME need to read hazard layer and see category or keyword if val == 3: affected = 3 count2 += 1 elif val == 2: affected = 2 count1 += 1 elif val == 1: affected = 1 count0 += 1 else: affected = 'None' # Collect depth and calculated damage result_dict = {self.target_field: affected, 'CATEGORY': val} # Record result for this feature building_impact.append(result_dict) # Create impact report # Generate impact summary table_body = [question, TableRow([tr('Category'), tr('Affected')], header=True), TableRow([tr('High'), format_int(count2)]), TableRow([tr('Medium'), format_int(count1)]), TableRow([tr('Low'), format_int(count0)]), TableRow([tr('All'), format_int(N)])] table_body.append(TableRow(tr('Notes'), header=True)) table_body.append(tr('Categorised hazard has only 3' ' classes, high, medium and low.')) impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary map_title = tr('Categorised hazard impact on buildings') #FIXME it would be great to do categorized rather than grduated # Create style style_classes = [dict(label=tr('Low'), min=1, max=1, colour='#1EFC7C', transparency=0, size=1), dict(label=tr('Medium'), min=2, max=2, colour='#FFA500', transparency=0, size=1), dict(label=tr('High'), min=3, max=3, colour='#F31A1C', transparency=0, size=1)] style_info = dict(target_field=self.target_field, style_classes=style_classes) # Create vector layer and return name = 'Buildings Affected' V = Vector(data=building_impact, projection=E.get_projection(), geometry=coordinates, geometry_type=E.geometry_type, keywords={'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'target_field': self.target_field, 'statistics_type': self.statistics_type, 'statistics_classes': self.statistics_classes}, name=name, style_info=style_info) return V
def run(self, layers): """Risk plugin for flood population evacuation Input layers: List of layers expected to contain H: Vector polygon layer of flood depth P: Raster layer of population data on the same grid as H Counts number of people exposed to areas identified as flood prone Return Map of population exposed to flooding Table with number of people evacuated and supplies required """ # Identify hazard and exposure layers H = get_hazard_layer(layers) # Flood inundation E = get_exposure_layer(layers) question = get_question(H.get_name(), E.get_name(), self) # Check that hazard is polygon type if not H.is_vector: msg = ('Input hazard %s was not a vector layer as expected ' % H.get_name()) raise Exception(msg) msg = ('Input hazard must be a polygon layer. I got %s with layer ' 'type %s' % (H.get_name(), H.get_geometry_name())) if not H.is_polygon_data: raise Exception(msg) # Run interpolation function for polygon2raster P = assign_hazard_values_to_exposure_data(H, E, attribute_name='population') # Initialise attributes of output dataset with all attributes # from input polygon and a population count of zero new_attributes = H.get_data() category_title = 'FLOODPRONE' # FIXME: Should come from keywords categories = {} for attr in new_attributes: attr[self.target_field] = 0 cat = attr[category_title] categories[cat] = 0 # Count affected population per polygon, per category and total evacuated = 0 for attr in P.get_data(): affected = False if 'FLOODPRONE' in attr: res = attr['FLOODPRONE'] if res is not None: affected = res.lower() == 'yes' else: # If there isn't a flood prone attribute, # assume that building is wet if inside polygon # as flag by generic attribute AFFECTED res = attr['Affected'] if res is not None: affected = res if affected: # Get population at this location pop = float(attr['population']) # Update population count for associated polygon poly_id = attr['polygon_id'] new_attributes[poly_id][self.target_field] += pop # Update population count for each category cat = new_attributes[poly_id][category_title] categories[cat] += pop # Update total evacuated += pop # Count totals total = int(numpy.sum(E.get_data(nan=0, scaling=False))) # Don't show digits less than a 1000 if total > 1000: total = total // 1000 * 1000 if evacuated > 1000: evacuated = evacuated // 1000 * 1000 # Calculate estimated needs based on BNPB Perka 7/2008 minimum bantuan rice = evacuated * 2.8 drinking_water = evacuated * 17.5 water = evacuated * 67 family_kits = evacuated / 5 toilets = evacuated / 20 # Generate impact report for the pdf map table_body = [question, TableRow([tr('People needing evacuation'), '%i' % evacuated], header=True), TableRow(tr('Map shows population affected in each flood' ' prone area ')), TableRow([tr('Needs per week'), tr('Total')], header=True), [tr('Rice [kg]'), int(rice)], [tr('Drinking Water [l]'), int(drinking_water)], [tr('Clean Water [l]'), int(water)], [tr('Family Kits'), int(family_kits)], [tr('Toilets'), int(toilets)]] impact_table = Table(table_body).toNewlineFreeString() table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append(TableRow(tr('If yes, where are they located and how ' 'will we distribute them?'))) table_body.append(TableRow(tr('If no, where can we obtain additional ' 'relief items from and how will we ' 'transport them to here?'))) # Extend impact report for on-screen display table_body.extend([TableRow(tr('Notes'), header=True), tr('Total population: %i') % total, tr('People need evacuation if in area identified ' 'as "Flood Prone"'), tr('Minimum needs are defined in BNPB ' 'regulation 7/2008')]) impact_summary = Table(table_body).toNewlineFreeString() map_title = tr('People affected by flood prone areas') # Define classes for legend for flooded population counts colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] population_counts = [x['population'] for x in new_attributes] cls = [0] + numpy.linspace(1, max(population_counts), len(colours)).tolist() # Define style info for output polygons showing population counts style_classes = [] for i, colour in enumerate(colours): lo = cls[i] hi = cls[i + 1] if i == 0: label = tr('0') transparency = 100 else: label = tr('%i - %i') % (lo, hi) transparency = 0 entry = dict(label=label, colour=colour, min=lo, max=hi, transparency=transparency, size=1) style_classes.append(entry) # Override style info with new classes and name style_info = dict(target_field=self.target_field, style_classes=style_classes, legend_title=tr('Population Count')) # Create vector layer and return V = Vector(data=new_attributes, projection=H.get_projection(), geometry=H.get_geometry(), name=tr('Population affected by flood prone areas'), keywords={'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'target_field': self.target_field}, style_info=style_info) return V
def run(self, layers): """Plugin for impact of population as derived by classified hazard. Input :param layers: List of layers expected to contain * hazard_layer: Raster layer of classified hazard * exposure_layer: Raster layer of population data Counts number of people exposed to each class of the hazard Return Map of population exposed to high class Table with number of people in each class """ # The 3 classes low_t = self.parameters['low_hazard_class'] medium_t = self.parameters['medium_hazard_class'] high_t = self.parameters['high_hazard_class'] # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Classified Hazard exposure_layer = get_exposure_layer(layers) # Population Raster question = get_question( hazard_layer.get_name(), exposure_layer.get_name(), self) # Extract data as numeric arrays data = hazard_layer.get_data(nan=0.0) # Class # Calculate impact as population exposed to each class population = exposure_layer.get_data(nan=0.0, scaling=True) if high_t == 0: hi = numpy.where(0, population, 0) else: hi = numpy.where(data == high_t, population, 0) if medium_t == 0: med = numpy.where(0, population, 0) else: med = numpy.where(data == medium_t, population, 0) if low_t == 0: lo = numpy.where(0, population, 0) else: lo = numpy.where(data == low_t, population, 0) if high_t == 0: impact = numpy.where( (data == low_t) + (data == medium_t), population, 0) elif medium_t == 0: impact = numpy.where( (data == low_t) + (data == high_t), population, 0) elif low_t == 0: impact = numpy.where( (data == medium_t) + (data == high_t), population, 0) else: impact = numpy.where( (data == low_t) + (data == medium_t) + (data == high_t), population, 0) # Count totals total = int(numpy.sum(population)) high = int(numpy.sum(hi)) medium = int(numpy.sum(med)) low = int(numpy.sum(lo)) total_impact = int(numpy.sum(impact)) # Perform population rounding based on number of people no_impact = population_rounding(total - total_impact) total = population_rounding(total) total_impact = population_rounding(total_impact) high = population_rounding(high) medium = population_rounding(medium) low = population_rounding(low) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map table_body = [question, TableRow([tr('Total Population Affected '), '%s' % format_int(total_impact)], header=True), TableRow([tr('Population in High hazard class areas '), '%s' % format_int(high)]), TableRow([tr('Population in Medium hazard class areas '), '%s' % format_int(medium)]), TableRow([tr('Population in Low hazard class areas '), '%s' % format_int(low)]), TableRow([tr('Population Not Affected'), '%s' % format_int(no_impact)]), TableRow( tr('Table below shows the minimum needs for all ' 'evacuated people'))] total_needs = evacuated_population_needs( total_impact, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) impact_table = Table(table_body).toNewlineFreeString() table_body.append( TableRow(tr('Action Checklist:'), header=True)) table_body.append( TableRow(tr('How will warnings be disseminated?'))) table_body.append( TableRow(tr('How will we reach stranded people?'))) table_body.append( TableRow(tr('Do we have enough relief items?'))) table_body.append( TableRow( tr('If yes, where are they located and how will we distribute ' 'them?'))) table_body.append( TableRow( tr('If no, where can we obtain additional relief items from ' 'and how will we transport them to here?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Map shows the numbers of people in high, medium, and low ' 'hazard class areas'), tr('Total population: %s') % format_int(total) ]) impact_summary = Table(table_body).toNewlineFreeString() # Create style colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] classes = create_classes(impact.flat[:], len(colours)) interval_classes = humanize_class(classes) style_classes = [] for i in xrange(len(colours)): style_class = dict() if i == 1: label = create_label(interval_classes[i], 'Low') elif i == 4: label = create_label(interval_classes[i], 'Medium') elif i == 7: label = create_label(interval_classes[i], 'High') else: label = create_label(interval_classes[i]) style_class['label'] = label style_class['quantity'] = classes[i] if i == 0: transparency = 30 else: transparency = 30 style_class['transparency'] = transparency style_class['colour'] = colours[i] style_classes.append(style_class) style_info = dict( target_field=None, style_classes=style_classes, style_type='rasterStyle') # For printing map purpose map_title = tr('Population affected by each class') legend_notes = tr( 'Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Number of People') # Create raster object and return raster_layer = Raster( impact, projection=hazard_layer.get_projection(), geotransform=hazard_layer.get_geotransform(), name=tr('Population which %s') % ( get_function_title(self).lower()), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'total_needs': total_needs}, style_info=style_info) return raster_layer
def run(self, layers): """Risk plugin for flood population evacuation Input layers: List of layers expected to contain H: Raster layer of flood depth P: Raster layer of population data on the same grid as H Counts number of people exposed to flood levels exceeding specified threshold. Return Map of population exposed to flood levels exceeding the threshold Table with number of people evacuated and supplies required """ # Identify hazard and exposure layers inundation = get_hazard_layer(layers) # Flood inundation [m] population = get_exposure_layer(layers) question = get_question(inundation.get_name(), population.get_name(), self) # Determine depths above which people are regarded affected [m] # Use thresholds from inundation layer if specified thresholds = self.parameters['thresholds'] verify(isinstance(thresholds, list), 'Expected thresholds to be a list. Got %s' % str(thresholds)) # Extract data as numeric arrays D = inundation.get_data(nan=0.0) # Depth # Calculate impact as population exposed to depths > max threshold P = population.get_data(nan=0.0, scaling=True) # Calculate impact to intermediate thresholds counts = [] for i, lo in enumerate(thresholds): if i == len(thresholds) - 1: # The last threshold I = M = numpy.where(D >= lo, P, 0) else: # Intermediate thresholds hi = thresholds[i + 1] M = numpy.where((D >= lo) * (D < hi), P, 0) # Count val = int(numpy.sum(M)) # Don't show digits less than a 1000 if val > 1000: val = val // 1000 * 1000 counts.append(val) # Count totals evacuated = counts[-1] total = int(numpy.sum(P)) # Don't show digits less than a 1000 if total > 1000: total = total // 1000 * 1000 # Calculate estimated needs based on BNPB Perka 7/2008 minimum bantuan # FIXME: Refactor and share rice = int(evacuated * 2.8) drinking_water = int(evacuated * 17.5) water = int(evacuated * 67) family_kits = int(evacuated / 5) toilets = int(evacuated / 20) # Generate impact report for the pdf map table_body = [ question, TableRow([(tr('People in %.1f m of water') % thresholds[-1]), '%s' % format_int(evacuated)], header=True), TableRow(tr('Map shows population density needing ' 'evacuation')), TableRow([tr('Needs per week'), tr('Total')], header=True), [tr('Rice [kg]'), format_int(rice)], [tr('Drinking Water [l]'), format_int(drinking_water)], [tr('Clean Water [l]'), format_int(water)], [tr('Family Kits'), format_int(family_kits)], [tr('Toilets'), format_int(toilets)] ] impact_table = Table(table_body).toNewlineFreeString() table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append( TableRow( tr('If yes, where are they located and how ' 'will we distribute them?'))) table_body.append( TableRow( tr('If no, where can we obtain additional ' 'relief items from and how will we ' 'transport them to here?'))) # Extend impact report for on-screen display table_body.extend([ TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if flood levels ' 'exceed %(eps).1f m') % { 'eps': thresholds[-1] }, tr('Minimum needs are defined in BNPB ' 'regulation 7/2008') ]) if len(counts) > 1: table_body.append(TableRow(tr('Detailed breakdown'), header=True)) for i, val in enumerate(counts[:-1]): s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i') % { 'lo': thresholds[i], 'hi': thresholds[i + 1], 'val': format_int(val) }) table_body.append(TableRow(s, header=False)) impact_summary = Table(table_body).toNewlineFreeString() map_title = tr('People in need of evacuation') # Generate 8 equidistant classes across the range of flooded population # 8 is the number of classes in the predefined flood population style # as imported classes = numpy.linspace(numpy.nanmin(I.flat[:]), numpy.nanmax(I.flat[:]), 8) # Modify labels in existing flood style to show quantities style_classes = style_info['style_classes'] style_classes[1]['label'] = tr('Low [%i people/cell]') % classes[1] style_classes[4]['label'] = tr('Medium [%i people/cell]') % classes[4] style_classes[7]['label'] = tr('High [%i people/cell]') % classes[7] # Override associated quantities in colour style for i in range(len(classes)): if i == 0: transparency = 100 else: transparency = 0 style_classes[i]['quantity'] = classes[i] style_classes[i]['transparency'] = transparency # Title style_info['legend_title'] = tr('Population Density') # Create raster object and return R = Raster(I, projection=inundation.get_projection(), geotransform=inundation.get_geotransform(), name=tr('Population which %s') % get_function_title(self), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title }, style_info=style_info) return R
def get_plugins_as_table(dict_filter=None): """Retrieve a table listing all plugins and their requirements. Or just a single plugin if name is passed. Args: * dict_filter = dictionary that contains filters - id = list_id - title = list_title - category : list_category - subcategory : list_subcategory - layertype : list_layertype - datatype : list_datatype - unit: list_unit - disabled : list_disabled # not included Returns: * table contains plugins match with dict_filter Raises: None """ if dict_filter is None: dict_filter = {'id': [], 'title': [], 'category': [], 'subcategory': [], 'layertype': [], 'datatype': [], 'unit': []} table_body = [] # use this list for avoiding wrong order in dict atts = ['category', 'subcategory', 'layertype', 'datatype', 'unit'] header = TableRow([tr('Title'), tr('ID'), tr('Category'), tr('Sub Category'), tr('Layer type'), tr('Data type'), tr('Unit')], header=True) table_body.append(header) plugins_dict = dict([(pretty_function_name(p), p) for p in FunctionProvider.plugins]) not_found_value = 'N/A' for key, func in plugins_dict.iteritems(): for requirement in requirements_collect(func): dict_found = {'title': False, 'id': False, 'category': False, 'subcategory': False, 'layertype': False, 'datatype': False, 'unit': False} dict_req = parse_single_requirement(str(requirement)) # If the impact function is disabled, do not show it if dict_req.get('disabled', False): continue for myKey in dict_found.iterkeys(): myFilter = dict_filter.get(myKey, []) if myKey == 'title': myValue = str(get_function_title(func)) elif myKey == 'id': myValue = str(key) else: myValue = dict_req.get(myKey, not_found_value) if myFilter != []: for myKeyword in myFilter: if type(myValue) == type(str()): if myValue == myKeyword: dict_found[myKey] = True break elif type(myValue) == type(list()): if myKeyword in myValue: dict_found[myKey] = True break else: if myValue.find(str(myKeyword)) != -1: dict_found[myKey] = True break else: dict_found[myKey] = True add_row = True for found_value in dict_found.itervalues(): if not found_value: add_row = False break if add_row: row = [] row.append(TableCell(get_function_title(func), header=True)) row.append(key) for myKey in atts: myValue = pretty_string(dict_req.get(myKey, not_found_value)) row.append(myValue) table_body.append(TableRow(row)) cw = 100 / 7 table_col_width = [str(cw) + '%', str(cw) + '%', str(cw) + '%', str(cw) + '%', str(cw) + '%', str(cw) + '%', str(cw) + '%'] table = Table(table_body, col_width=table_col_width) table.caption = tr('Available Impact Functions') return table
def run(self, layers): """Flood impact to buildings (e.g. from Open Street Map). :param layers: List of layers expected to contain. * hazard_layer: Hazard raster layer of flood * exposure_layer: Vector layer of structure data on the same grid as hazard_layer """ threshold = self.parameters['threshold [m]'] # Flood threshold [m] verify(isinstance(threshold, float), 'Expected thresholds to be a float. Got %s' % str(threshold)) # Extract data hazard_layer = get_hazard_layer(layers) # Depth exposure_layer = get_exposure_layer(layers) # Building locations question = get_question(hazard_layer.get_name(), exposure_layer.get_name(), self) # Determine attribute name for hazard levels mode = 'grid' hazard_attribute = 'depth' # Interpolate hazard level to building locations interpolated_layer = assign_hazard_values_to_exposure_data( hazard_layer, exposure_layer, attribute_name=hazard_attribute) # Extract relevant exposure data attribute_names = interpolated_layer.get_attribute_names() features = interpolated_layer.get_data() total_features = len(interpolated_layer) buildings = {} # The number of affected buildings affected_count = 0 # The variable for grid mode inundated_count = 0 wet_count = 0 dry_count = 0 inundated_buildings = {} wet_buildings = {} dry_buildings = {} # The variable for regions mode affected_buildings = {} for i in range(total_features): # Get the interpolated depth water_depth = float(features[i]['depth']) if water_depth <= 0: inundated_status = 0 # dry elif water_depth >= threshold: inundated_status = 1 # inundated else: inundated_status = 2 # wet # Count affected buildings by usage type if available usage = get_osm_building_usage(attribute_names, features[i]) if usage is not None and usage != 0: key = usage else: key = 'unknown' if key not in buildings: buildings[key] = 0 inundated_buildings[key] = 0 wet_buildings[key] = 0 dry_buildings[key] = 0 # Count all buildings by type buildings[key] += 1 if inundated_status is 0: # Count dry buildings by type dry_buildings[key] += 1 # Count total dry buildings dry_count += 1 if inundated_status is 1: # Count inundated buildings by type inundated_buildings[key] += 1 # Count total dry buildings inundated_count += 1 if inundated_status is 2: # Count wet buildings by type wet_buildings[key] += 1 # Count total wet buildings wet_count += 1 # Add calculated impact to existing attributes features[i][self.target_field] = inundated_status affected_count = inundated_count + wet_count # Lump small entries and 'unknown' into 'other' category for usage in buildings.keys(): x = buildings[usage] if x < 25 or usage == 'unknown': if 'other' not in buildings: buildings['other'] = 0 if mode == 'grid': inundated_buildings['other'] = 0 wet_buildings['other'] = 0 dry_buildings['other'] = 0 elif mode == 'regions': affected_buildings['other'] = 0 buildings['other'] += x if mode == 'grid': inundated_buildings['other'] += inundated_buildings[usage] wet_buildings['other'] += wet_buildings[usage] dry_buildings['other'] += dry_buildings[usage] del buildings[usage] del inundated_buildings[usage] del wet_buildings[usage] del dry_buildings[usage] elif mode == 'regions': affected_buildings['other'] += affected_buildings[usage] del buildings[usage] del affected_buildings[usage] # Generate simple impact report table_body = [ question, TableRow([ tr('Building type'), tr('Number Inundated'), tr('Number of Wet Buildings'), tr('Number of Dry Buildings'), tr('Total') ], header=True), TableRow([ tr('All'), format_int(inundated_count), format_int(wet_count), format_int(dry_count), format_int(total_features) ]) ] school_closed = 0 hospital_closed = 0 # Generate break down by building usage type if available list_type_attribute = [ 'TYPE', 'type', 'amenity', 'building_t', 'office', 'tourism', 'leisure', 'building' ] intersect_type = set(attribute_names) & set(list_type_attribute) if len(intersect_type) > 0: # Make list of building types building_list = [] for usage in buildings: building_type = usage.replace('_', ' ') # Lookup internationalised value if available building_type = tr(building_type) building_list.append([ building_type.capitalize(), format_int(inundated_buildings[usage]), format_int(wet_buildings[usage]), format_int(dry_buildings[usage]), format_int(buildings[usage]) ]) if usage.lower() == 'school': school_closed = 0 school_closed += inundated_buildings[usage] school_closed += wet_buildings[usage] if usage.lower() == 'hospital': hospital_closed = 0 hospital_closed += inundated_buildings[usage] hospital_closed += wet_buildings[usage] # Sort alphabetically building_list.sort() table_body.append( TableRow(tr('Breakdown by building type'), header=True)) for row in building_list: s = TableRow(row) table_body.append(s) # Action Checklist Section table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append( TableRow(tr('Are the critical facilities still open?'))) table_body.append( TableRow( tr('Which structures have warning capacity (eg. sirens, speakers, ' 'etc.)?'))) table_body.append( TableRow(tr('Which buildings will be evacuation centres?'))) table_body.append( TableRow(tr('Where will we locate the operations centre?'))) table_body.append( TableRow( tr('Where will we locate warehouse and/or distribution centres?' ))) if school_closed > 0: table_body.append( TableRow( tr('Where will the students from the %s closed schools go to ' 'study?') % format_int(school_closed))) if hospital_closed > 0: table_body.append( TableRow( tr('Where will the patients from the %s closed hospitals go ' 'for treatment and how will we transport them?') % format_int(hospital_closed))) # Notes Section table_body.append(TableRow(tr('Notes'), header=True)) table_body.append( TableRow( tr('Buildings are said to be inundated when flood levels ' 'exceed %.1f m') % threshold)) table_body.append( TableRow( tr('Buildings are said to be wet when flood levels ' 'are greater than 0 m but less than %.1f m') % threshold)) table_body.append( TableRow( tr('Buildings are said to be dry when flood levels ' 'are less than 0 m'))) table_body.append( TableRow( tr('Buildings are said to be closed if they are inundated or ' 'wet'))) table_body.append( TableRow(tr('Buildings are said to be open if they are dry'))) # Result impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary # Prepare impact layer map_title = tr('Buildings inundated') legend_title = tr('Structure inundated status') style_classes = [ dict(label=tr('Dry (<= 0 m)'), value=0, colour='#1EFC7C', transparency=0, size=1), dict(label=tr('Wet (0 m - %.1f m)') % threshold, value=2, colour='#FF9900', transparency=0, size=1), dict(label=tr('Inundated (>= %.1f m)') % threshold, value=1, colour='#F31A1C', transparency=0, size=1) ] legend_units = tr('(inundated, wet, or dry)') style_info = dict(target_field=self.target_field, style_classes=style_classes, style_type='categorizedSymbol') # Create vector layer and return vector_layer = Vector(data=features, projection=interpolated_layer.get_projection(), geometry=interpolated_layer.get_geometry(), name=tr('Estimated buildings affected'), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'target_field': self.target_field, 'map_title': map_title, 'legend_units': legend_units, 'legend_title': legend_title, 'buildings_total': total_features, 'buildings_affected': affected_count }, style_info=style_info) return vector_layer
def test_table_with_colalign(self): """Table columns can be right justified""" # First with default alignment actual_result = Table(['12', '3000', '5']) expected_strings = [ '<td colspan="100%">12</td>', '<td colspan="100%">3000</td>', '<td colspan="100%">5</td>' ] for s in expected_strings: message = ('Did not find expected string "%s" in result: %s' % (s, actual_result)) assert s in str(actual_result).strip(), message # Then using explicit alignment (all right justified) # FIXME (Ole): This does not work if e.g. col_align has # different strings: col_align = ['right', 'left', 'center'] actual_result = Table(['12', '3000', '5'], col_align=['right', 'right', 'right']) expected_strings = [ ('<td colspan="100%" align="right" style="text-align: ' 'right;">12</td>'), ('<td colspan="100%" align="right" style="text-align: ' 'right;">3000</td>'), ('<td colspan="100%" align="right" style="text-align: ' 'right;">5</td>') ] for s in expected_strings: message = ('Did not find expected string "%s" in result: %s' % (s, actual_result)) assert s in str(actual_result).strip(), message # Now try at the TableRow level # FIXME (Ole): Breaks tables! # row = TableRow(['12', '3000', '5'], # col_align=['right', 'right', 'right']) # actual_result = Table(row) # print actual_result # This breaks too - what's going on? # row = TableRow(['12', '3000', '5']) # actual_result = Table(row) # print actual_result # Try at the cell level cell_1 = TableCell('12', align='right') cell_2 = TableCell('3000', align='right') cell_3 = TableCell('5', align='right') row = TableRow([cell_1, cell_2, cell_3]) # print row # OK # This is OK for cell in [cell_1, cell_2, cell_3]: msg = 'Wrong cell alignment %s' % cell assert 'align="right"' in str(cell), msg table = Table(row) self.html += str(table) self.writeHtml('table_column_alignment')
def run(self, layers): """Risk plugin for flood population evacuation Input: layers: List of layers expected to contain my_hazard : Vector polygon layer of flood depth my_exposure : Raster layer of population data on the same grid as my_hazard Counts number of people exposed to areas identified as flood prone Return Map of population exposed to flooding Table with number of people evacuated and supplies required """ # Identify hazard and exposure layers my_hazard = get_hazard_layer(layers) # Flood inundation my_exposure = get_exposure_layer(layers) question = get_question(my_hazard.get_name(), my_exposure.get_name(), self) # Check that hazard is polygon type if not my_hazard.is_vector: msg = ('Input hazard %s was not a vector layer as expected ' % my_hazard.get_name()) raise Exception(msg) msg = ('Input hazard must be a polygon layer. I got %s with layer ' 'type %s' % (my_hazard.get_name(), my_hazard.get_geometry_name())) if not my_hazard.is_polygon_data: raise Exception(msg) # Run interpolation function for polygon2raster P = assign_hazard_values_to_exposure_data(my_hazard, my_exposure, attribute_name='population') # Initialise attributes of output dataset with all attributes # from input polygon and a population count of zero new_attributes = my_hazard.get_data() category_title = 'affected' # FIXME: Should come from keywords deprecated_category_title = 'FLOODPRONE' categories = {} for attr in new_attributes: attr[self.target_field] = 0 try: cat = attr[category_title] except KeyError: cat = attr['FLOODPRONE'] categories[cat] = 0 # Count affected population per polygon, per category and total affected_population = 0 for attr in P.get_data(): affected = False if 'affected' in attr: res = attr['affected'] if res is None: x = False else: x = bool(res) affected = x elif 'FLOODPRONE' in attr: # If there isn't an 'affected' attribute, res = attr['FLOODPRONE'] if res is not None: affected = res.lower() == 'yes' elif 'Affected' in attr: # Check the default attribute assigned for points # covered by a polygon res = attr['Affected'] if res is None: x = False else: x = res affected = x else: # there is no flood related attribute msg = ('No flood related attribute found in %s. ' 'I was looking fore either "Flooded", "FLOODPRONE" ' 'or "Affected". The latter should have been ' 'automatically set by call to ' 'assign_hazard_values_to_exposure_data(). ' 'Sorry I can\'t help more.') raise Exception(msg) if affected: # Get population at this location pop = float(attr['population']) # Update population count for associated polygon poly_id = attr['polygon_id'] new_attributes[poly_id][self.target_field] += pop # Update population count for each category try: cat = new_attributes[poly_id][category_title] except KeyError: cat = new_attributes[poly_id][deprecated_category_title] categories[cat] += pop # Update total affected_population += pop affected_population = round_thousand(affected_population) # Estimate number of people in need of evacuation evacuated = (affected_population * self.parameters['evacuation_percentage'] / 100.0) total = int(numpy.sum(my_exposure.get_data(nan=0, scaling=False))) # Don't show digits less than a 1000 total = round_thousand(total) evacuated = round_thousand(evacuated) # Calculate estimated minimum needs minimum_needs = self.parameters['minimum needs'] tot_needs = evacuated_population_weekly_needs(evacuated, minimum_needs) # Generate impact report for the pdf map table_body = [question, TableRow([tr('People affected'), '%s%s' % (format_int(int(affected_population)), ('*' if affected_population >= 1000 else ''))], header=True), TableRow([tr('People needing evacuation'), '%s%s' % (format_int(int(evacuated)), ('*' if evacuated >= 1000 else ''))], header=True), TableRow([ TableCell( tr('* Number is rounded to the nearest 1000'), col_span=2)], header=False), TableRow([tr('Evacuation threshold'), '%s%%' % format_int( self.parameters['evacuation_percentage'])], header=True), TableRow(tr('Map shows population affected in each flood' ' prone area')), TableRow(tr('Table below shows the weekly minium needs ' 'for all evacuated people')), TableRow([tr('Needs per week'), tr('Total')], header=True), [tr('Rice [kg]'), format_int(tot_needs['rice'])], [tr('Drinking Water [l]'), format_int(tot_needs['drinking_water'])], [tr('Clean Water [l]'), format_int(tot_needs['water'])], [tr('Family Kits'), format_int(tot_needs[ 'family_kits'])], [tr('Toilets'), format_int(tot_needs['toilets'])]] impact_table = Table(table_body).toNewlineFreeString() table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append(TableRow(tr('If yes, where are they located and how ' 'will we distribute them?'))) table_body.append(TableRow(tr('If no, where can we obtain additional ' 'relief items from and how will we ' 'transport them to here?'))) # Extend impact report for on-screen display table_body.extend([TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if in area identified ' 'as "Flood Prone"'), tr('Minimum needs are defined in BNPB ' 'regulation 7/2008')]) impact_summary = Table(table_body).toNewlineFreeString() # Create style # Define classes for legend for flooded population counts colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] population_counts = [x['population'] for x in new_attributes] classes = create_classes(population_counts, len(colours)) interval_classes = humanize_class(classes) # Define style info for output polygons showing population counts style_classes = [] for i in xrange(len(colours)): style_class = dict() style_class['label'] = create_label(interval_classes[i]) if i == 0: transparency = 100 style_class['min'] = 0 else: transparency = 0 style_class['min'] = classes[i - 1] style_class['transparency'] = transparency style_class['colour'] = colours[i] style_class['max'] = classes[i] style_classes.append(style_class) # Override style info with new classes and name style_info = dict(target_field=self.target_field, style_classes=style_classes, style_type='graduatedSymbol') # For printing map purpose map_title = tr('People affected by flood prone areas') legend_notes = tr('Thousand separator is represented by \'.\'') legend_units = tr('(people per polygon)') legend_title = tr('Population Count') # Create vector layer and return V = Vector(data=new_attributes, projection=my_hazard.get_projection(), geometry=my_hazard.get_geometry(), name=tr('Population affected by flood prone areas'), keywords={'impact_summary': impact_summary, 'impact_table': impact_table, 'target_field': self.target_field, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title}, style_info=style_info) return V
def run(self, layers): """Plugin for impact of population as derived by categorised hazard Input layers: List of layers expected to contain my_hazard: Raster layer of categorised hazard my_exposure: Raster layer of population data Counts number of people exposed to each category of the hazard Return Map of population exposed to high category Table with number of people in each category """ # The 3 category high_t = 1 medium_t = 0.66 low_t = 0.34 # Identify hazard and exposure layers my_hazard = get_hazard_layer(layers) # Categorised Hazard my_exposure = get_exposure_layer(layers) # Population Raster question = get_question(my_hazard.get_name(), my_exposure.get_name(), self) # Extract data as numeric arrays C = my_hazard.get_data(nan=0.0) # Category # Calculate impact as population exposed to each category P = my_exposure.get_data(nan=0.0, scaling=True) H = numpy.where(C == high_t, P, 0) M = numpy.where(C > medium_t, P, 0) L = numpy.where(C < low_t, P, 0) # Count totals total = int(numpy.sum(P)) high = int(numpy.sum(H)) medium = int(numpy.sum(M)) - int(numpy.sum(H)) low = int(numpy.sum(L)) - int(numpy.sum(M)) total_impact = high + medium + low # Don't show digits less than a 1000 total = round_thousand(total) total_impact = round_thousand(total_impact) high = round_thousand(high) medium = round_thousand(medium) low = round_thousand(low) # Generate impact report for the pdf map table_body = [question, TableRow([tr('People impacted '), '%s' % format_int(total_impact)], header=True), TableRow([tr('People in high hazard area '), '%s' % format_int(high)], header=True), TableRow([tr('People in medium hazard area '), '%s' % format_int(medium)], header=True), TableRow([tr('People in low hazard area'), '%s' % format_int(low)], header=True)] impact_table = Table(table_body).toNewlineFreeString() # Extend impact report for on-screen display table_body.extend([TableRow(tr('Notes'), header=True), tr('Map shows population density in high or medium ' 'hazard area'), tr('Total population: %s') % format_int(total)]) impact_summary = Table(table_body).toNewlineFreeString() map_title = tr('People in high hazard areas') # Generate 8 equidistant classes across the range of flooded population # 8 is the number of classes in the predefined flood population style # as imported # noinspection PyTypeChecker classes = numpy.linspace(numpy.nanmin(M.flat[:]), numpy.nanmax(M.flat[:]), 8) # Modify labels in existing flood style to show quantities style_classes = style_info['style_classes'] style_classes[1]['label'] = tr('Low [%i people/cell]') % classes[1] style_classes[4]['label'] = tr('Medium [%i people/cell]') % classes[4] style_classes[7]['label'] = tr('High [%i people/cell]') % classes[7] style_info['legend_title'] = tr('Population Density') # Create raster object and return R = Raster(M, projection=my_hazard.get_projection(), geotransform=my_hazard.get_geotransform(), name=tr('Population which %s') % ( get_function_title(self).lower()), keywords={'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title}, style_info=style_info) return R
def run(self, layers): """Risk plugin for volcano population evacuation. :param layers: List of layers expected to contain where two layers should be present. * hazard_layer: Vector polygon layer of volcano impact zones * exposure_layer: Raster layer of population data on the same grid as hazard_layer Counts number of people exposed to volcano event. :returns: Map of population exposed to the volcano hazard zone. The returned dict will include a table with number of people evacuated and supplies required. :rtype: dict :raises: * Exception - When hazard layer is not vector layer * RadiiException - When radii are not valid (they need to be monotonically increasing) """ # Identify hazard and exposure layers hazard_layer = get_hazard_layer(layers) # Volcano KRB exposure_layer = get_exposure_layer(layers) question = get_question( hazard_layer.get_name(), exposure_layer.get_name(), self) # Input checks if not hazard_layer.is_vector: msg = ('Input hazard %s was not a vector layer as expected ' % hazard_layer.get_name()) raise Exception(msg) msg = ('Input hazard must be a polygon or point layer. I got %s with ' 'layer type %s' % (hazard_layer.get_name(), hazard_layer.get_geometry_name())) if not (hazard_layer.is_polygon_data or hazard_layer.is_point_data): raise Exception(msg) data_table = hazard_layer.get_data() if hazard_layer.is_point_data: # Use concentric circles radii = self.parameters['distance [km]'] category_title = 'Radius' category_header = tr('Distance [km]') category_names = radii name_attribute = 'NAME' # As in e.g. the Smithsonian dataset centers = hazard_layer.get_geometry() rad_m = [x * 1000 for x in radii] # Convert to meters hazard_layer = buffer_points( centers, rad_m, category_title, data_table=data_table) else: # Use hazard map category_title = 'KRB' category_header = tr('Category') # FIXME (Ole): Change to English and use translation system category_names = ['Kawasan Rawan Bencana III', 'Kawasan Rawan Bencana II', 'Kawasan Rawan Bencana I'] name_attribute = 'GUNUNG' # As in e.g. BNPB hazard map # Get names of volcanoes considered if name_attribute in hazard_layer.get_attribute_names(): volcano_name_list = [] # Run through all polygons and get unique names for row in data_table: volcano_name_list.append(row[name_attribute]) volcano_names = '' for name in volcano_name_list: volcano_names += '%s, ' % name volcano_names = volcano_names[:-2] # Strip trailing ', ' else: volcano_names = tr('Not specified in data') # Check if category_title exists in hazard_layer if category_title not in hazard_layer.get_attribute_names(): msg = ('Hazard data %s did not contain expected ' 'attribute %s ' % (hazard_layer.get_name(), category_title)) # noinspection PyExceptionInherit raise InaSAFEError(msg) # Find the target field name that has no conflict with default target attribute_names = hazard_layer.get_attribute_names() new_target_field = get_non_conflicting_attribute_name( self.target_field, attribute_names) self.target_field = new_target_field # Run interpolation function for polygon2raster interpolated_layer = assign_hazard_values_to_exposure_data( hazard_layer, exposure_layer, attribute_name=self.target_field) # Initialise data_table of output dataset with all data_table # from input polygon and a population count of zero new_data_table = hazard_layer.get_data() categories = {} for row in new_data_table: row[self.target_field] = 0 category = row[category_title] categories[category] = 0 # Count affected population per polygon and total for row in interpolated_layer.get_data(): # Get population at this location population = float(row[self.target_field]) # Update population count for associated polygon poly_id = row['polygon_id'] new_data_table[poly_id][self.target_field] += population # Update population count for each category category = new_data_table[poly_id][category_title] categories[category] += population # Count totals total_population = population_rounding( int(numpy.sum(exposure_layer.get_data(nan=0)))) # Count number and cumulative for each zone cumulative = 0 all_categories_population = {} all_categories_cumulative = {} for name in category_names: if category_title == 'Radius': key = name * 1000 # Convert to meters else: key = name # prevent key error population = int(categories.get(key, 0)) cumulative += population # I'm not sure whether this is the best place to apply rounding? all_categories_population[name] = population_rounding(population) all_categories_cumulative[name] = population_rounding(cumulative) # Use final accumulation as total number needing evacuation evacuated = population_rounding(cumulative) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map blank_cell = '' table_body = [question, TableRow([tr('Volcanoes considered'), '%s' % volcano_names, blank_cell], header=True), TableRow([tr('People needing evacuation'), '%s' % format_int(evacuated), blank_cell], header=True), TableRow([category_header, tr('Total'), tr('Cumulative')], header=True)] for name in category_names: table_body.append( TableRow([name, format_int(all_categories_population[name]), format_int(all_categories_cumulative[name])])) table_body.extend([ TableRow(tr( 'Map shows the number of people affected in each of volcano ' 'hazard polygons.'))]) total_needs = evacuated_population_needs( evacuated, minimum_needs) for frequency, needs in total_needs.items(): table_body.append(TableRow( [ tr('Needs should be provided %s' % frequency), tr('Total') ], header=True)) for resource in needs: table_body.append(TableRow([ tr(resource['table name']), format_int(resource['amount'])])) impact_table = Table(table_body).toNewlineFreeString() # Extend impact report for on-screen display table_body.extend( [TableRow(tr('Notes'), header=True), tr('Total population %s in the exposure layer') % format_int( total_population), tr('People need evacuation if they are within the ' 'volcanic hazard zones.')]) population_counts = [x[self.target_field] for x in new_data_table] impact_summary = Table(table_body).toNewlineFreeString() # check for zero impact if numpy.nanmax(population_counts) == 0 == numpy.nanmin( population_counts): table_body = [ question, TableRow([tr('People needing evacuation'), '%s' % format_int(evacuated), blank_cell], header=True)] my_message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(my_message) # Create style colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] classes = create_classes(population_counts, len(colours)) interval_classes = humanize_class(classes) # Define style info for output polygons showing population counts style_classes = [] for i in xrange(len(colours)): style_class = dict() style_class['label'] = create_label(interval_classes[i]) if i == 0: transparency = 100 style_class['min'] = 0 else: transparency = 30 style_class['min'] = classes[i - 1] style_class['transparency'] = transparency style_class['colour'] = colours[i] style_class['max'] = classes[i] style_classes.append(style_class) # Override style info with new classes and name style_info = dict(target_field=self.target_field, style_classes=style_classes, style_type='graduatedSymbol') # For printing map purpose map_title = tr('People affected by volcanic hazard zone') legend_notes = tr('Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Population') # Create vector layer and return impact_layer = Vector( data=new_data_table, projection=hazard_layer.get_projection(), geometry=hazard_layer.get_geometry(as_geometry_objects=True), name=tr('People affected by volcanic hazard zone'), keywords={'impact_summary': impact_summary, 'impact_table': impact_table, 'target_field': self.target_field, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'total_needs': total_needs}, style_info=style_info) return impact_layer
def run(self, layers=None): """Risk plugin for flood population evacuation. :param layers: List of layers expected to contain hazard_layer: Raster layer of flood depth exposure_layer: Raster layer of population data on the same grid as hazard_layer Counts number of people exposed to flood levels exceeding specified threshold. :returns: Map of population exposed to flood levels exceeding the threshold. Table with number of people evacuated and supplies required. :rtype: tuple """ self.validate() self.prepare(layers) # Identify hazard and exposure layers hazard_layer = self.hazard # Flood inundation exposure_layer = self.exposure # Determine depths above which people are regarded affected [m] # Use thresholds from inundation layer if specified thresholds = self.parameters['thresholds [m]'] verify( isinstance(thresholds, list), 'Expected thresholds to be a list. Got %s' % str(thresholds)) # Extract data as numeric arrays data = hazard_layer.get_data(nan=True) # Depth no_data_warning = False if has_no_data(data): no_data_warning = True # Calculate impact as population exposed to depths > max threshold population = exposure_layer.get_data(nan=True, scaling=True) if has_no_data(population): no_data_warning = True # Calculate impact to intermediate thresholds counts = [] # merely initialize impact = None for i, lo in enumerate(thresholds): if i == len(thresholds) - 1: # The last threshold impact = medium = numpy.where(data >= lo, population, 0) else: # Intermediate thresholds hi = thresholds[i + 1] medium = numpy.where((data >= lo) * (data < hi), population, 0) # Count val = int(numpy.nansum(medium)) counts.append(val) # Carry the no data values forward to the impact layer. impact = numpy.where(numpy.isnan(population), numpy.nan, impact) impact = numpy.where(numpy.isnan(data), numpy.nan, impact) # Count totals evacuated, rounding_evacuated = population_rounding_full(counts[-1]) total = int(numpy.nansum(population)) # Don't show digits less than a 1000 total = population_rounding(total) minimum_needs = [ parameter.serialize() for parameter in self.parameters['minimum needs'] ] # Generate impact report for the pdf map # noinspection PyListCreation table_body, total_needs = self._tabulate( counts, evacuated, minimum_needs, self.question, rounding_evacuated, thresholds, total, no_data_warning) # Result impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary # check for zero impact if numpy.nanmax(impact) == 0 == numpy.nanmin(impact): table_body = self._tabulate_zero_impact( evacuated, self.question, table_body, thresholds) my_message = Table(table_body).toNewlineFreeString() raise ZeroImpactException(my_message) # Create style colours = [ '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600', '#FF0000', '#7A0000'] classes = create_classes(impact.flat[:], len(colours)) interval_classes = humanize_class(classes) style_classes = [] for i in xrange(len(colours)): style_class = dict() if i == 1: label = create_label(interval_classes[i], 'Low') elif i == 4: label = create_label(interval_classes[i], 'Medium') elif i == 7: label = create_label(interval_classes[i], 'High') else: label = create_label(interval_classes[i]) style_class['label'] = label style_class['quantity'] = classes[i] if i == 0: transparency = 100 else: transparency = 0 style_class['transparency'] = transparency style_class['colour'] = colours[i] style_classes.append(style_class) style_info = dict( target_field=None, style_classes=style_classes, style_type='rasterStyle') # For printing map purpose map_title = tr('People in need of evacuation') legend_notes = tr( 'Thousand separator is represented by %s' % get_thousand_separator()) legend_units = tr('(people per cell)') legend_title = tr('Population Count') # Create raster object and return raster = Raster( impact, projection=hazard_layer.get_projection(), geotransform=hazard_layer.get_geotransform(), name=tr('Population which %s') % ( self.impact_function_manager .get_function_title(self).lower()), keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'legend_notes': legend_notes, 'legend_units': legend_units, 'legend_title': legend_title, 'evacuated': evacuated, 'total_needs': total_needs}, style_info=style_info) self._impact = raster return raster