Example #1
0
    def coordinates(self, digits=5, pspict=None):
        """
        Return the coordinates of the point as a string.
        
        
        @param {int} `digits` 
            The number of digits that will be written in the return string
        
        @param {Picture} `pspict` 
            If given,
            - we multiply by xunit and yunit
            - we apply the rotation
        
        Some conversions and approximations are done.
        See `number_to_string`.  
        """
        from yanntricks.src.Utilities import number_to_string
        x = self.x
        y = self.y

        if pspict:
            x = x * pspict.xunit
            y = y * pspict.yunit
            if pspict.rotation_angle is not None:
                ang = pspict.rotation_angle * pi / 180
                nx = x * cos(ang) + y * sin(ang)
                ny = -x * sin(ang) + y * cos(ang)
                x = nx
                y = ny

        sx = number_to_string(x, digits=digits)
        sy = number_to_string(y, digits=digits)

        return str("(" + sx + "," + sy + ")")
Example #2
0
def PolarCurve(fr, ftheta=None):
    """
    return the parametric curve (:class:`ParametricCurve`) corresponding to the 
    curve of equation r=f(theta) in polar coordinates.

    If ftheta is not given, return the curve
    x(t)=fr(t)cos(t)
    y(t)=fr(t)sin(t)

    If ftheta is given, return the curve
    x(t)=fr(t)cos( ftheta(t) )
    y(t)=fr(t)sin( ftheta(t) )

    EXAMPLES::
    
    .. literalinclude:: phystricksCardioid.py
    .. image:: Picture_FIGLabelFigCardioidPICTCardioid-for_eps.png

    """
    x = var('x')
    if ftheta == None:
        f1 = fr * cos(x)
        f2 = fr * sin(x)
    else:
        f1 = fr(x=x) * cos(ftheta(x=x))
        f2 = fr(x=x) * sin(ftheta(x=x))
    return ParametricCurve(f1, f2)
Example #3
0
    def parametric_curve(self,a=None,b=None):
        """
        Return the parametric curve associated to the circle.

        If optional arguments <a> and <b> are given, return the corresponding graph between the values a and b of the angle.

        The parameter of the curve is the angle in radian.
        """
        if self._parametric_curve is None :
            x=var('x')
            if self.visual is True:
                if self.pspict is None :
                    from Exceptions import MissingPictureException
                    raise MissingPictureException("You are trying to draw something with 'visual==True' when not giving a pspict.")
                f1 = phyFunction(self.center.x+self.radius*cos(x)/self.pspict.xunit)
                f2 = phyFunction(self.center.y+self.radius*sin(x)/self.pspict.yunit)
            else :
                f1 = phyFunction(self.center.x+self.radius*cos(x))
                f2 = phyFunction(self.center.y+self.radius*sin(x))
            try :
                ai=self.angleI.radian
                af=self.angleF.radian
            except AttributeError:
                ai=self.angleI
                af=self.angleF
            self._parametric_curve = ParametricCurve(f1,f2,(ai,af))
        curve=self._parametric_curve
        # The following is the typical line that is replaced by the decorator
        # 'copy_parameters'
        #curve.parameters=self.parameters.copy()         
        if a==None :
            return curve
        else :
            return curve.graph(a,b)
Example #4
0
def test_reverse():
    echo_function("test_reverse")
    x = var('x')
    curve = ParametricCurve(cos(x), sin(x)).graph(0, 2 * pi).reverse()

    f1 = cos(-x)
    f2 = sin(-x)

    assert_true(curve.f1.sage == f1)
    assert_true(curve.f2.sage == f2)
def test_vertical_horizontal():
    echo_function("test_vertical_horizontal")

    A = Point(1.50000000000000 * cos(0.111111111111111 * pi),
              -1.50000000000000 * sin(0.111111111111111 * pi))
    B = Point(3.00000000000000 * cos(0.111111111111111 * pi),
              -3.00000000000000 * sin(0.111111111111111 * pi))
    seg = Segment(A, B)
    assert_equal(seg.is_vertical, False)
    assert_equal(seg.is_horizontal, False)
Example #6
0
def su2_mu_portrait(n):
    """ returns an encoded line plot of SU(2) x mu(n) in the complex plane """
    if n == 1:
        return db.gps_st.lookup('1.2.A.1.1a').get('trace_histogram')
    if n <= 120:
        plot =  sum([line2d([(-2*cos(2*pi*m/n),-2*sin(2*pi*m/n)),(2*cos(2*pi*m/n),2*sin(2*pi*m/n))],thickness=3) for m in range(n)])
    else:
        plot = circle((0,0),2,fill=True)
    plot.xmin(-2); plot.xmax(2); plot.ymin(-2); plot.ymax(2)
    plot.set_aspect_ratio(4.0/3.0)
    plot.axes(False)
    return encode_plot(plot)
Example #7
0
def nu1_mu_portrait(n):
    """ returns an encoded scatter plot of the nth roots of unity in the complex plane """
    if n == 1:
        return db.gps_st.lookup('1.2.B.2.1a').get('trace_histogram')
    if n <= 120:
        plot =  sum([line2d([(-2*cos(2*pi*m/n),-2*sin(2*pi*m/n)),(2*cos(2*pi*m/n),2*sin(2*pi*m/n))],thickness=3) for m in range(n)]) + circle((0,0),0.1,rgbcolor=(0,0,0),fill=True)
    else:
        plot = circle((0,0),2,fill=True)
    plot.xmin(-2); plot.xmax(2); plot.ymin(-2); plot.ymax(2)
    plot.set_aspect_ratio(4.0/3.0)
    plot.axes(False)
    return encode_plot(plot)
Example #8
0
def su2_mu_portrait(n):
    """ returns an encoded line plot of SU(2) x mu(n) in the complex plane """
    if n == 1:
        return db.gps_sato_tate.lookup('1.2.3.1.1a').get('trace_histogram')
    if n <= 120:
        plot =  sum([line2d([(-2*cos(2*pi*m/n),-2*sin(2*pi*m/n)),(2*cos(2*pi*m/n),2*sin(2*pi*m/n))],thickness=3) for m in range(n)])
    else:
        plot = circle((0,0),2,fill=True)
    plot.xmin(-2); plot.xmax(2); plot.ymin(-2); plot.ymax(2)
    plot.set_aspect_ratio(4.0/3.0)
    plot.axes(False)
    return encode_plot(plot)
Example #9
0
def nu1_mu_portrait(n):
    """ returns an encoded scatter plot of the nth roots of unity in the complex plane """
    if n == 1:
        return db.gps_sato_tate.lookup('1.2.1.2.1a').get('trace_histogram')
    if n <= 120:
        plot =  sum([line2d([(-2*cos(2*pi*m/n),-2*sin(2*pi*m/n)),(2*cos(2*pi*m/n),2*sin(2*pi*m/n))],thickness=3) for m in range(n)]) + circle((0,0),0.1,rgbcolor=(0,0,0),fill=True)
    else:
        plot = circle((0,0),2,fill=True)
    plot.xmin(-2); plot.xmax(2); plot.ymin(-2); plot.ymax(2)
    plot.set_aspect_ratio(4.0/3.0)
    plot.axes(False)
    return encode_plot(plot)
Example #10
0
    def rotate(self, theta):
        """
        Return a new ParametricCurve which graph is rotated by <theta> with respect to self.

        theta is given in degree.
        """
        from yanntricks.src.Constructors import ParametricCurve
        from yanntricks.src.radian_unit import radian
        alpha = radian(theta)
        g1 = cos(alpha) * self.f1 + sin(alpha) * self.f2
        g2 = -sin(alpha) * self.f1 + cos(alpha) * self.f2
        return ParametricCurve(g1, g2)
Example #11
0
    def visual_angleIF(self,pspict):
        aI1=visual_polar_coordinates(Point( cos(self.angleI.radian),sin(self.angleI.radian) ),pspict).measure
        aF1=visual_polar_coordinates(Point( cos(self.angleF.radian),sin(self.angleF.radian) ),pspict).measure

        a=numerical_approx(aI1.degree)
        b=numerical_approx(aF1.degree)
        if a > b:
            a=a-360
            aI2=AngleMeasure(value_degree=a)
        else :
            aI2=aI1
        aF2=aF1
        return aI2,aF2
Example #12
0
def with_box():
    # The "demonstration picture" BOVAooIlzgFQpG serves to test
    # how it works visually.
    echo_function("with_box")
    from phystricks.src.Utilities import point_to_box_intersection

    echo_single_test("one box ...")
    P = Point(1, 1)
    box = BoundingBox(xmin=2, ymin=3, xmax=6, ymax=4)
    ans = [Point(17 / 5, 3), Point(23 / 5, 4)]
    for t in zip(ans, point_to_box_intersection(P, box)):
        assert_equal(t[0], t[1])

    echo_single_test("an other box ...")
    P = Point(1, 1)
    box = BoundingBox(xmin=1, ymin=3, xmax=4, ymax=4)
    ans = [Point(11 / 5, 3), Point(14 / 5, 4)]
    for t in zip(ans, point_to_box_intersection(P, box)):
        assert_equal(t[0], t[1])

    echo_single_test("an other box ...")
    P = Point(0, 0)
    box = BoundingBox(xmin=cos(pi + 0.109334472936971) - 0.5,
                      xmax=cos(pi + 0.109334472936971) + 0.5,
                      ymin=sin(pi + 0.109334472936971) - 0.5,
                      ymax=sin(pi + 0.109334472936971) + 0.5)
    ans = [Point(11 / 5, 3), Point(14 / 5, 4)]

    ans=[Point(-22625191/45797299,-116397308741499/2146337772042166),\
            Point(-11397639/7628794,-58636168225371/357531318982996)]
    for t in zip(ans, point_to_box_intersection(P, box)):
        assert_equal(t[0], t[1])

    echo_single_test("point->center parallel to a edge")
    P = Point(0, 0)
    box = BoundingBox(xmin=-2.0719775,
                      xmax=-0.8437425000000001,
                      ymin=-0.1148125,
                      ymax=0.1148125)

    ans = [Point(-337497 / 400000, 0), Point(-828791 / 400000, 0)]
    for t in zip(ans, point_to_box_intersection(P, box)):
        assert_equal(t[0], t[1])

    echo_single_test("an other box (corner) ...")
    P = Point(0, 1)
    box = BoundingBox(xmin=-1, ymin=-3, xmax=-0.5, ymax=-1)
    ans = [Point(-0.5, -1), Point(-1, -3)]
    for t in zip(ans, point_to_box_intersection(P, box)):
        assert_equal(t[0], t[1])
def test_right_angle():
    echo_function("test_right_angle")
    with SilentOutput():
        pspict, fig = SinglePicture("HYVFooTHaDDQ")

    A = Point(2.96406976477346 * cos(-1 / 9 * pi + 1.09432432510594),
              2.96406976477346 * sin(-1 / 9 * pi + 1.09432432510594))
    B = Point(1.50000000000000 * cos(0.111111111111111 * pi),
              -1.50000000000000 * sin(0.111111111111111 * pi))
    C = Point(3.00000000000000 * cos(0.111111111111111 * pi),
              -3.00000000000000 * sin(0.111111111111111 * pi))

    rh = RightAngleAOB(A, B, C)
    pspict.DrawGraphs(rh)
Example #14
0
    def render(self, frameNumber, filename):
        self.frameManager.setCurrentFrame(frameNumber)

        look_at = (0.5, 0, 0.5)

        alpha = (2.0 * pi) * (
            (float(frameNumber)) / float(self.getDuration() / 8.0))
        p_matrix = matrix(2, 1, [1.0, 1.0])
        r_matrix = matrix(
            2, 2, [cos(alpha), -sin(alpha),
                   sin(alpha), cos(alpha)])

        pos = r_matrix * p_matrix

        camera_center = (float(pos[0][0]), 0.75, float(pos[1][0]))

        self.initializeWindow(camera_center, look_at)

        self.window.light((1, 2, -3), 0.2, (1, 1, 1))

        self.window.texture('blue',
                            ambient=0.2,
                            diffuse=1.0,
                            specular=0.0,
                            opacity=1.0,
                            color=(0, 0, 1))

        stage = self.frameManager.barCount() % 4

        if self.fractal == None:
            self.fractal = self.getFractal(stage)
            self.current_stage = stage
        elif self.current_stage != stage:
            self.fractal = self.getFractal(stage)
            self.current_stage = stage

        fractal_size = self.getFractalSize(self.fractal)

        cube_scale = 1. / float(fractal_size)

        for y_pos, y_fractal in enumerate(self.fractal):
            for x_pos, x_y_fractal in enumerate(y_fractal):
                for z_pos, x_y_z_fractal in enumerate(x_y_fractal):
                    if x_y_z_fractal == 1:
                        self.drawCube(cube_scale * x_pos, cube_scale * y_pos,
                                      cube_scale * z_pos, cube_scale, 'blue')

        self.window.save(filename)
Example #15
0
        def fourier_series_partial_sum(cls, self, parameters, variable, N, L):
            r"""
            Returns the partial sum

            .. math::

               f(x) \sim \frac{a_0}{2} + \sum_{n=1}^N [a_n\cos(\frac{n\pi x}{L}) + b_n\sin(\frac{n\pi x}{L})],

            as a string.

            EXAMPLE::

                sage: f(x) = x^2
                sage: f = piecewise([[(-1,1),f]])
                sage: f.fourier_series_partial_sum(3,1)
                cos(2*pi*x)/pi^2 - 4*cos(pi*x)/pi^2 + 1/3
                sage: f1(x) = -1
                sage: f2(x) = 2
                sage: f = piecewise([[(-pi,pi/2),f1],[(pi/2,pi),f2]])
                sage: f.fourier_series_partial_sum(3,pi)
                -3*cos(x)/pi - 3*sin(2*x)/pi + 3*sin(x)/pi - 1/4
            """
            from sage.all import pi, sin, cos, srange
            x = self.default_variable()
            a0 = self.fourier_series_cosine_coefficient(0,L)
            result = a0/2 + sum([(self.fourier_series_cosine_coefficient(n,L)*cos(n*pi*x/L) +
                                  self.fourier_series_sine_coefficient(n,L)*sin(n*pi*x/L))
                                 for n in srange(1,N)])
            return SR(result).expand()
def test_elliptic_curve(a, b, alpha=7, angles=12):
    from sage.all import cos, sin, pi
    E = EllipticCurve(QQ, [a, b])
    rationalpoints = E.point_search(10)
    EQbar = EllipticCurve(QQbar, [a, b])
    infx, infy, _ = rationalpoints[0]
    inf = EQbar(infx, infy)
    print inf
    R = PolynomialRing(QQ, "w")
    w = R.gen()
    f = w**3 + a * w + b
    iaj = InvertAJlocal(f, 256, method='gauss-legendre')
    iaj.set_basepoints([(mpmath.mpf(infx), mpmath.mpf(infy))])
    for eps in [
            cos(theta * 2 * pi / angles) + I * sin(theta * 2 * pi / angles)
            for theta in range(0, angles)
    ]:
        px = infx + eps
        py = iaj.sign * sqrt(-E.defining_polynomial().subs(x=px, y=0, z=1))
        P = EQbar(px, py)
        try:
            (v, errorv) = iaj.to_J(px, infx)
            qx = (alpha * P - (alpha - 1) * inf).xy()[0]
            qxeps = CC(qx) + (mpmath.rand() + I * mpmath.rand()) / 1000
            (t1, errort1) = iaj.solve(alpha * v, 100, iaj.error, [qxeps])
            qxguess = t1[0, 0]
            print mpmath.fabs(qxguess - qx) < 2**(-mpmath.mp.prec / 2)
        except RuntimeWarning as detail:
            print detail
    def setup_fields_and_triangles(self):
        from sage.all import RealIntervalField, ComplexIntervalField, sin, cos, exp

        self.RIF = RealIntervalField(120)
        self.CIF = ComplexIntervalField(120)

        alpha = self.RIF(0.4)

        self.finiteTriangle1 = FiniteTriangle([
            FinitePoint(z=exp(self.CIF(0, 2.1 * i + 0.1)) * cos(alpha),
                        t=sin(alpha)) for i in range(3)
        ])

        self.idealTriangle1 = IdealTriangle([
            ProjectivePoint(z=exp(self.CIF(0, 2.1 * i + 0.1)))
            for i in range(3)
        ])

        self.idealTriangle2 = IdealTriangle(
            [ProjectivePoint(self.CIF(z)) for z in [-1, 0, 1]])

        self.idealTriangle3 = IdealTriangle([
            ProjectivePoint(self.CIF(1)),
            ProjectivePoint(self.CIF(-1)),
            ProjectivePoint(self.CIF(0), True)
        ])
Example #18
0
def get_matrix(matrix, mesh, argyris=False,
               convection_field=(sg.cos(sg.pi/3), sg.sin(sg.pi/3)),
               forcing_function=1, stabilization_coeff=0.0):
    """
    Build a finite element matrix.
    """
    if argyris:
        builder = {'mass': cfem.cf_ap_build_mass,
                   'stiffness': cfem.cf_ap_build_stiffness,
                   'betaplane': cfem.cf_ap_build_betaplane,
                   'biharmonic': cfem.cf_ap_build_biharmonic}[matrix]
        order = 5

    else:
        builder = {'mass': cfem.cf_build_mass,
                   'convection': cfem.cf_build_convection,
                   'stiffness': cfem.cf_build_stiffness,
                   'hessian': cfem.cf_build_hessian}[matrix]
        order = mesh.order
    convection, _, ref_data = _get_lookups(convection_field, forcing_function,
                                           stabilization_coeff, order,
                                           argyris=argyris)
    cmesh, elements = _get_cmesh(mesh)

    length = elements.shape[0]*elements.shape[1]**2
    rows = np.zeros(length, dtype=np.int32) + -99999
    columns = np.zeros(length, dtype=np.int32) + -99999
    values = np.zeros(length, dtype=np.double) + -99999
    triplet_matrix = CTripletMatrix(length=length,
                                    rows=rows.ctypes.data_as(PINT),
                                    columns=columns.ctypes.data_as(PINT),
                                    values=values.ctypes.data_as(PDOUBLE))

    builder(cmesh, ref_data, convection, triplet_matrix)
    return sparse.coo_matrix((values, (rows, columns))).tocsc()
Example #19
0
        def fourier_series_partial_sum(cls, self, parameters, variable, N, L):
            r"""
            Returns the partial sum

            .. math::

               f(x) \sim \frac{a_0}{2} + \sum_{n=1}^N [a_n\cos(\frac{n\pi x}{L}) + b_n\sin(\frac{n\pi x}{L})],

            as a string.

            EXAMPLE::

                sage: f(x) = x^2
                sage: f = piecewise([[(-1,1),f]])
                sage: f.fourier_series_partial_sum(3,1)
                cos(2*pi*x)/pi^2 - 4*cos(pi*x)/pi^2 + 1/3
                sage: f1(x) = -1
                sage: f2(x) = 2
                sage: f = piecewise([[(-pi,pi/2),f1],[(pi/2,pi),f2]])
                sage: f.fourier_series_partial_sum(3,pi)
                -3*cos(x)/pi - 3*sin(2*x)/pi + 3*sin(x)/pi - 1/4
            """
            from sage.all import pi, sin, cos, srange
            x = self.default_variable()
            a0 = self.fourier_series_cosine_coefficient(0, L)
            result = a0 / 2 + sum(
                [(self.fourier_series_cosine_coefficient(n, L) *
                  cos(n * pi * x / L) + self.fourier_series_sine_coefficient(
                      n, L) * sin(n * pi * x / L)) for n in srange(1, N)])
            return SR(result).expand()
Example #20
0
        def fourier_series_sine_coefficient(cls, self, parameters, variable, n,
                                            L):
            r"""
            Returns the n-th Fourier series coefficient of
            `\sin(n\pi x/L)`, `b_n`.

            INPUT:


            -  ``self`` - the function f(x), defined over -L x L

            -  ``n`` - an integer n0

            -  ``L`` - (the period)/2


            OUTPUT:
            `b_n = \frac{1}{L}\int_{-L}^L f(x)\sin(n\pi x/L)dx`

            EXAMPLES::

                sage: f(x) = x^2
                sage: f = piecewise([[(-1,1),f]])
                sage: f.fourier_series_sine_coefficient(2,1)  # L=1, n=2
                0
            """
            from sage.all import sin, pi
            x = SR.var('x')
            result = 0
            for domain, f in parameters:
                for interval in domain:
                    a = interval.lower()
                    b = interval.upper()
                    result += (f * sin(pi * x * n / L) / L).integrate(x, a, b)
            return SR(result).simplify_trig()
Example #21
0
def get_linearization(matrix, mesh, solution, argyris=False,
                      convection_field=(sg.cos(sg.pi/3), sg.sin(sg.pi/3)),
                      forcing_function=1, stabilization_coeff=0.0):
    if not argyris:
        raise NotImplementedError
    order = 5
    builder = {
        0: cfem.cf_ap_build_jacobian_0,
        1: cfem.cf_ap_build_jacobian_1,
    }[matrix]
    convection, _, ref_data = _get_lookups(convection_field, forcing_function,
                                           stabilization_coeff, order,
                                           argyris=True)
    cmesh, elements = _get_cmesh(mesh)

    length = elements.shape[0]*elements.shape[1]**2
    rows = np.zeros(length, dtype=np.int32) + -99999
    columns = np.zeros(length, dtype=np.int32) + -99999
    values = np.zeros(length, dtype=np.double) + -99999
    triplet_matrix = CTripletMatrix(length=length,
                                    rows=rows.ctypes.data_as(PINT),
                                    columns=columns.ctypes.data_as(PINT),
                                    values=values.ctypes.data_as(PDOUBLE))

    assert len(solution) == mesh.nodes.shape[0]
    cvector = CVector(length=mesh.nodes.shape[0],
                      values=solution.ctypes.data_as(PDOUBLE))
    builder(cmesh, ref_data, convection, cvector, triplet_matrix)
    answer = sparse.coo_matrix((values, (rows, columns))).tocsc()
    return answer
Example #22
0
def get_load_vector(mesh, time, argyris=False,
                    convection_field=(sg.cos(sg.pi/3), sg.sin(sg.pi/3)),
                    forcing_function=1, stabilization_coeff=0.0):
    """
    Form a load vector from symbolic expressions for the convection
    field and forcing function. The symbolic expressions are cached.
    """
    if argyris:
        order = 5
    else:
        order = mesh.order
    convection, forcing, ref_data = _get_lookups(
        convection_field, forcing_function, stabilization_coeff, order,
        argyris=argyris)
    cmesh, elements = _get_cmesh(mesh)

    load_vector = np.zeros(mesh.nodes.shape[0])
    cvector = CVector(length=mesh.nodes.shape[0],
                      values=load_vector.ctypes.data_as(PDOUBLE))

    if argyris:
        builder = cfem.cf_ap_build_load
    else:
        builder = cfem.cf_build_load
    builder(cmesh, ref_data, convection, forcing, time, cvector)

    return load_vector
Example #23
0
        def fourier_series_sine_coefficient(cls, self, parameters, variable, n, L):
            r"""
            Returns the n-th Fourier series coefficient of
            `\sin(n\pi x/L)`, `b_n`.

            INPUT:


            -  ``self`` - the function f(x), defined over -L x L

            -  ``n`` - an integer n0

            -  ``L`` - (the period)/2


            OUTPUT:
            `b_n = \frac{1}{L}\int_{-L}^L f(x)\sin(n\pi x/L)dx`

            EXAMPLES::

                sage: f(x) = x^2
                sage: f = piecewise([[(-1,1),f]])
                sage: f.fourier_series_sine_coefficient(2,1)  # L=1, n=2
                0
            """
            from sage.all import sin, pi
            x = SR.var('x')
            result = 0
            for domain, f in parameters:
                for interval in domain:
                    a = interval.lower()
                    b = interval.upper()
                    result += (f*sin(pi*x*n/L)/L).integrate(x, a, b)
            return SR(result).simplify_trig()
Example #24
0
def PolarSegment(P, r, theta):
    """
    return a segment on the base point P (class Point) of 
    length r and angle theta (degree)
    """
    alpha = radian(theta)
    return Segment(P, Point(P.x + r * cos(alpha), P.y + r * sin(alpha)))
Example #25
0
def lines_and_functions():
    """
    Test the intersection function
    """
    echo_function("lines_and_functions")

    x = var('x')
    fun = phyFunction(x**2 - 5 * x + 6)
    droite = phyFunction(2)
    pts = Intersection(fun, droite)

    echo_single_test("Function against horizontal line")
    assert_equal(pts[0], Point(1, 2))
    assert_equal(pts[1], Point(4, 2))

    echo_single_test("Two functions (sine and cosine)")
    f = phyFunction(sin(x))
    g = phyFunction(cos(x))
    pts = Intersection(f, g, -2 * pi, 2 * pi, numerical=True)

    # due to the default epsilon in `assert_almost_equal`,
    # in fact we do not test these points with the whole given precision.
    ans = []
    ans.append(Point(-5.497787143782138, 0.707106781186548))
    ans.append(Point(-2.3561944901923466, -0.707106781186546))
    ans.append(Point(0.7853981633974484, 0.707106781186548))
    ans.append(Point(3.926990816987241, -0.707106781186547))

    for t in zip(pts, ans):
        assert_almost_equal(t[0], t[1])
Example #26
0
    def _grid2motion(self, NAC_coloring, data, check):
        self._par_type = 'symbolic'
        alpha = var('alpha')
        self._field = parent(alpha)
        self._parameter = alpha
        self._active_NACs = [NAC_coloring]
        zigzag = data['zigzag']
        grid_coor = NAC_coloring.grid_coordinates(ordered_red=data['red'], ordered_blue=data['blue'])
        self._same_lengths = []
        for i, edges in enumerate([NAC_coloring.blue_edges(), NAC_coloring.red_edges()]):
            partition = [[list(edges[0])]]
            for u, v in edges[1:]:
                appended = False
                for part in partition:
                    u2, v2 = part[0]
                    if Set([grid_coor[u][i], grid_coor[v][i]]) == Set([grid_coor[u2][i], grid_coor[v2][i]]):
                        part.append([u, v])
                        appended = True
                        break
                if not appended:
                    partition.append([[u, v]])
            self._same_lengths += partition

        if check and len(Set(grid_coor.values())) != self._graph.num_verts():
            raise exceptions.ValueError('The NAC-coloring does not yield a proper flexible labeling.')
        if zigzag:
            if type(zigzag) == list and len(zigzag) == 2:
                a = [vector(c) for c in zigzag[0]]
                b = [vector(c) for c in zigzag[1]]
            else:
                m = max([k for _, k in grid_coor.values()])
                n = max([k for k, _ in grid_coor.values()])
                a = [vector([0.3*((-1)**i-1)+0.3*sin(i), i]) for i in range(0,m+1)]
                b = [vector([j, 0.3*((-1)**j-1)+0.3*sin(j)]) for j in range(0,n+1)]
        else:
            m = max([k for _, k in grid_coor.values()])
            n = max([k for k, _ in grid_coor.values()])
            a = [vector([0, i]) for i in range(0,m+1)]
            b = [vector([j, 0]) for j in range(0,n+1)]

        rotation = matrix([[cos(alpha), sin(alpha)], [-sin(alpha), cos(alpha)]])
        positions = {}
        for v in self._graph.vertices():
            positions[v] = rotation * a[grid_coor[v][1]] + b[grid_coor[v][0]]
        self._parametrization = positions
Example #27
0
 def __init__(self,dof,name,shortname=None):
   
   self.dof = int(dof)
   self.name = name
   if shortname == None :
     self.shortname = name.replace(' ','_').replace('.','_')
   else :
     self.shortname = shortname.replace(' ','_').replace('.','_')
   
   for i in range(1 ,1 +dof):
     var('q'+str(i),domain=RR)
   
   
   (alpha , a , d , theta) = SR.var('alpha,a,d,theta',domain=RR)
   default_params_dh = [ alpha , a , d , theta  ]
   default_T_dh = matrix( \
   [[ cos(theta), -sin(theta)*cos(alpha), sin(theta)*sin(alpha), a*cos(theta) ], \
   [ sin(theta), cos(theta)*cos(alpha), -cos(theta)*sin(alpha), a*sin(theta) ], \
   [ 0.0, sin(alpha), cos(alpha), d ]
   ,[ 0.0, 0.0, 0.0, 1.0] ] )
   
   #g_a = SR.var('g_a',domain=RR)
   g_a = 9.81
   self.grav = matrix([[0.0],[0.0],[-g_a]])
   
   self.params_dh = default_params_dh
   self.T_dh = default_T_dh
   
   self.links_dh = []
   
   self.motors = []
   self.Imzi = []
   
   self._gensymbols()
Example #28
0
def mu_portrait(n):
    """ returns an encoded scatter plot of the nth roots of unity in the complex plane """
    if n <= 120:
        plot =  list_plot([(cos(2*pi*m/n),sin(2*pi*m/n)) for m in range(n)],pointsize=30+60/n, axes=False)
    else:
        plot = circle((0,0),1,thickness=3)
    plot.xmin(-1); plot.xmax(1); plot.ymin(-1); plot.ymax(1)
    plot.set_aspect_ratio(4.0/3.0)
    return encode_plot(plot)
Example #29
0
def mu_portrait(n):
    """ returns an encoded scatter plot of the nth roots of unity in the complex plane """
    if n <= 120:
        plot =  list_plot([(cos(2*pi*m/n),sin(2*pi*m/n)) for m in range(n)],pointsize=30+60/n, axes=False)
    else:
        plot = circle((0,0),1,thickness=3)
    plot.xmin(-1); plot.xmax(1); plot.ymin(-1); plot.ymax(1)
    plot.set_aspect_ratio(4.0/3.0)
    return encode_plot(plot)
Example #30
0
def _gen_rbt_Si( rbt ):
    
    var('a theta alpha d',domain=RR)
    D_exp2trig = { e**(SR.wild(0)) : e**SR.wild(0).real_part() * ( cos(SR.wild(0).imag_part()) + I*sin(SR.wild(0).imag_part()) ) }
    M = matrix(SR,[[1,0,0,a],[0,cos(alpha),-sin(alpha),0],[0,sin(alpha),cos(alpha),d],[0,0,0,1]])
    P = matrix([[0,-1,0,0],[1,0,0,0],[0,0,0,0],[0,0,0,0]])
    ePtM = (exp(P*theta)*M).expand().subs(D_exp2trig).simplify_rational()
    restore('a theta alpha d')
    if bool( ePtM != rbt.T_dh ):
        raise Exception('_gen_rbt_Si: interlink transformation does not follows implemented DH formulation')
    S = ( inverse_T(M) * P * M ).expand().simplify_trig()
    
    dof = rbt.dof
    
    Si = range(dof+1)
    for l in range(dof): Si[l+1] = se3unskew( S.subs(LoP_to_D(zip(rbt.params_dh , rbt.links_dh[l]))) )
    
    return Si
def test_visual_length():
    echo_function("test_visual_length")

    with SilentOutput():
        pspict, fig = SinglePicture("ZZTHooTeGyMT")

    v = AffineVector(Point(0, 0), Point(0, sin(0.5 * pi)))
    w = visual_length(v, 0.1, pspict=pspict)
    ans = AffineVector(Point(0, 0), Point(0, 0.1))

    echo_single_test("positive")
    assert_equal(w, ans)

    echo_single_test("negative")
    v = AffineVector(Point(0, 0), Point(0, -sin(0.5 * pi)))
    w = visual_length(v, 0.1, pspict=pspict)
    ans = AffineVector(Point(0, 0), Point(0, -0.1))
    assert_equal(w, ans)
Example #32
0
def p_succ(i, N, t):
    """
    Success probability after i iterations of measuring a solution.

    :params i:  Grover's iterations
    :param  N:  Grover's search space size
    :params t:  target solutions in search space
    """
    return R((sin((2*i+1)*theta(N, t)))**2)
Example #33
0
def plotit(k):
    k = int(k[0])
    # FIXME there could be a filename collission
    fn = tempfile.mktemp(suffix=".png")
    x = var('x')
    p = plot(sin(k * x))
    p.save(filename=fn)
    data = file(fn).read()
    os.remove(fn)
    return data
    def example_line_plane(self):
        from sage.all import exp, sin, cos

        d = self.RIF(1.09375)
        r = exp(d)

        alpha = self.RIF(0.4)
        z = self.CIF(r) * cos(alpha)

        for z1 in [self.CIF(0), self.CIF(0.1, 0.1)]:
            f = FiniteTriangle([
                FinitePoint(z=z, t=r * sin(alpha)),
                FinitePoint(z=-z, t=r * sin(alpha)),
                FinitePoint(z1, t=self.RIF(10.0))
            ])

            e = FiniteIdealTriangleDistanceEngine(f, self.idealTriangle1)

            if not abs(e.compute_lowerbound() - d) < 1e-20:
                raise Exception("Wrong distance %r" % e.compute_lowerbound())
Example #35
0
    def getPolarPoint(self, r, theta, pspict=None):
        """
        Return the point located at distance r and angle theta from point self.

        INPUT:

        - ``r`` - A number.

        - ``theta`` - the angle (degree or :class:`AngleMeasure`).

        - ``pspict`` - the pspicture in which the point is supposed to live. If `pspict` is given, we compute the deformation due to the dilatation.  Be careful: in that case `r` is given as absolute value and the visual effect will not be affected by dilatations.

        OUTPUT: A point.

        EXAMPLES::

            sage: from yanntricks import *
            sage: P=Point(1,2)
            sage: print P.get_polar_point(sqrt(2),45)
            <Point(2,3)>

        """
        from yanntricks.src.AngleMeasure import AngleMeasure
        from yanntricks.src.Constructors import Vector
        from yanntricks.src.radian_unit import radian
        from yanntricks.src.Exceptions import ShouldNotHappenException
        if isinstance(r, AngleMeasure):
            raise ShouldNotHappenException(
                "You are passing AngleMeasure instead of a number (the radius)."
            )
        if isinstance(theta, AngleMeasure):
            alpha = theta.radian
        else:
            alpha = radian(theta, number=True)
        if pspict:
            A = pspict.xunit
            B = pspict.yunit
            xP = r * cos(alpha) / A
            yP = r * sin(alpha) / B
            return self.translate(Vector(xP, yP))
        return Point(self.x + r * cos(alpha), self.y + r * sin(alpha))
Example #36
0
 def _sage_(self):
     import sage.all as sage
     return sage.sin(self.args[0]._sage_())
Example #37
0
def test_sage_conversions():
    try:
        import sage.all as sage
    except ImportError:
        return

    x, y = sage.SR.var('x y')
    x1, y1 = symbols('x, y')

    # Symbol
    assert x1._sage_() == x
    assert x1 == sympify(x)

    # Integer
    assert Integer(12)._sage_() == sage.Integer(12)
    assert Integer(12) == sympify(sage.Integer(12))

    # Rational
    assert (Integer(1) / 2)._sage_() == sage.Integer(1) / 2
    assert Integer(1) / 2 == sympify(sage.Integer(1) / 2)

    # Operators
    assert x1 + y == x1 + y1
    assert x1 * y == x1 * y1
    assert x1 ** y == x1 ** y1
    assert x1 - y == x1 - y1
    assert x1 / y == x1 / y1

    assert x + y1 == x + y
    assert x * y1 == x * y
    # Doesn't work in Sage 6.1.1ubuntu2
    # assert x ** y1 == x ** y
    assert x - y1 == x - y
    assert x / y1 == x / y

    # Conversions
    assert (x1 + y1)._sage_() == x + y
    assert (x1 * y1)._sage_() == x * y
    assert (x1 ** y1)._sage_() == x ** y
    assert (x1 - y1)._sage_() == x - y
    assert (x1 / y1)._sage_() == x / y

    assert x1 + y1 == sympify(x + y)
    assert x1 * y1 == sympify(x * y)
    assert x1 ** y1 == sympify(x ** y)
    assert x1 - y1 == sympify(x - y)
    assert x1 / y1 == sympify(x / y)

    # Functions
    assert sin(x1) == sin(x)
    assert sin(x1)._sage_() == sage.sin(x)
    assert sin(x1) == sympify(sage.sin(x))

    assert cos(x1) == cos(x)
    assert cos(x1)._sage_() == sage.cos(x)
    assert cos(x1) == sympify(sage.cos(x))

    assert function_symbol('f', x1, y1)._sage_() == sage.function('f', x, y)
    assert function_symbol('f', 2 * x1, x1 + y1).diff(x1)._sage_() == sage.function('f', 2 * x, x + y).diff(x)

    # For the following test, sage needs to be modified
    # assert sage.sin(x) == sage.sin(x1)

    # Constants
    assert pi._sage_() == sage.pi
    assert E._sage_() == sage.e
    assert I._sage_() == sage.I

    assert pi == sympify(sage.pi)
    assert E == sympify(sage.e)

    # SympyConverter does not support converting the following
    # assert I == sympify(sage.I)

    # Matrix
    assert DenseMatrix(1, 2, [x1, y1])._sage_() == sage.matrix([[x, y]])

    # SympyConverter does not support converting the following
    # assert DenseMatrix(1, 2, [x1, y1]) == sympify(sage.matrix([[x, y]]))

    # Sage Number
    a = sage.Mod(2, 7)
    b = PyNumber(a, sage_module)

    a = a + 8
    b = b + 8
    assert isinstance(b, PyNumber)
    assert b._sage_() == a

    a = a + x
    b = b + x
    assert isinstance(b, Add)
    assert b._sage_() == a

    # Sage Function
    e = x1 + wrap_sage_function(sage.log_gamma(x))
    assert str(e) == "x + log_gamma(x)"
    assert isinstance(e, Add)
    assert e + wrap_sage_function(sage.log_gamma(x)) == x1 + 2*wrap_sage_function(sage.log_gamma(x))

    f = e.subs({x1 : 10})
    assert f == 10 + log(362880)

    f = e.subs({x1 : 2})
    assert f == 2

    f = e.subs({x1 : 100});
    v = f.n(53, real=True);
    assert abs(float(v) - 459.13420537) < 1e-7

    f = e.diff(x1)
Example #38
0
def test_sage_conversions():
    try:
        import sage.all as sage
    except ImportError:
        return

    x, y = sage.SR.var('x y')
    x1, y1 = symbols('x, y')

    # Symbol
    assert x1._sage_() == x
    assert x1 == sympify(x)

    # Integer
    assert Integer(12)._sage_() == sage.Integer(12)
    assert Integer(12) == sympify(sage.Integer(12))

    # Rational
    assert (Integer(1) / 2)._sage_() == sage.Integer(1) / 2
    assert Integer(1) / 2 == sympify(sage.Integer(1) / 2)

    # Operators
    assert x1 + y == x1 + y1
    assert x1 * y == x1 * y1
    assert x1 ** y == x1 ** y1
    assert x1 - y == x1 - y1
    assert x1 / y == x1 / y1

    assert x + y1 == x + y
    assert x * y1 == x * y
    # Doesn't work in Sage 6.1.1ubuntu2
    # assert x ** y1 == x ** y
    assert x - y1 == x - y
    assert x / y1 == x / y

    # Conversions
    assert (x1 + y1)._sage_() == x + y
    assert (x1 * y1)._sage_() == x * y
    assert (x1 ** y1)._sage_() == x ** y
    assert (x1 - y1)._sage_() == x - y
    assert (x1 / y1)._sage_() == x / y

    assert x1 + y1 == sympify(x + y)
    assert x1 * y1 == sympify(x * y)
    assert x1 ** y1 == sympify(x ** y)
    assert x1 - y1 == sympify(x - y)
    assert x1 / y1 == sympify(x / y)

    # Functions
    assert sin(x1) == sin(x)
    assert sin(x1)._sage_() == sage.sin(x)
    assert sin(x1) == sympify(sage.sin(x))

    assert cos(x1) == cos(x)
    assert cos(x1)._sage_() == sage.cos(x)
    assert cos(x1) == sympify(sage.cos(x))

    assert function_symbol('f', x1, y1)._sage_() == sage.function('f', x, y)
    assert function_symbol('f', 2 * x1, x1 + y1).diff(x1)._sage_() == sage.function('f', 2 * x, x + y).diff(x)

    # For the following test, sage needs to be modified
    # assert sage.sin(x) == sage.sin(x1)

    # Constants
    assert pi._sage_() == sage.pi
    assert E._sage_() == sage.e
    assert I._sage_() == sage.I

    assert pi == sympify(sage.pi)
    assert E == sympify(sage.e)

    # SympyConverter does not support converting the following
    # assert I == sympify(sage.I)

    # Matrix
    assert DenseMatrix(1, 2, [x1, y1])._sage_() == sage.matrix([[x, y]])
Example #39
0
        def fourier_series_sine_coefficient(self, parameters, variable,
                                            n, L=None):
            r"""
            Return the `n`-th sine coefficient of the Fourier series of
            the periodic function `f` extending the piecewise-defined
            function ``self``.

            Given an integer `n\geq 0`, the `n`-th sine coefficient of
            the Fourier series of `f` is defined by

            .. MATH::

                b_n = \frac{1}{L}\int_{-L}^L
                        f(x)\sin\left(\frac{n\pi x}{L}\right) dx,

            where `L` is the half-period of `f`. The number `b_n` is
            the coefficient of `\sin(n\pi x/L)` in the Fourier
            series of `f` (cf. :meth:`fourier_series_partial_sum`).

            INPUT:

            - ``n`` -- a non-negative integer

            - ``L`` -- (default: ``None``) the half-period of `f`; if none
              is provided, `L` is assumed to be the half-width of the domain
              of ``self``

            OUTPUT:

            - the Fourier coefficient `b_n`, as defined above

            EXAMPLES:

            A square wave function of period 2::

                sage: f = piecewise([((-1,0), -1), ((0,1), 1)])
                sage: f.fourier_series_sine_coefficient(1)
                4/pi
                sage: f.fourier_series_sine_coefficient(2)
                0
                sage: f.fourier_series_sine_coefficient(3)
                4/3/pi

            If the domain of the piecewise-defined function encompasses
            more than one period, the half-period must be passed as the
            second argument; for instance::

                sage: f2 = piecewise([((-1,0), -1), ((0,1), 1),
                ....:                 ((1,2), -1), ((2,3), 1)])
                sage: bool(f2.restriction((-1,1)) == f)  # f2 extends f on (-1,3)
                True
                sage: f2.fourier_series_sine_coefficient(1, 1)  # half-period = 1
                4/pi
                sage: f2.fourier_series_sine_coefficient(3, 1)  # half-period = 1
                4/3/pi

            The default half-period is 2 and one has::

                sage: f2.fourier_series_sine_coefficient(1)  # half-period = 2
                0
                sage: f2.fourier_series_sine_coefficient(3)  # half-period = 2
                0

            The Fourier coefficients obtained from ``f`` are actually
            recovered for `n=2` and `n=6` respectively::

                sage: f2.fourier_series_sine_coefficient(2)
                4/pi
                sage: f2.fourier_series_sine_coefficient(6)
                4/3/pi

            """
            from sage.all import sin, pi
            L0 = (self.domain().sup() - self.domain().inf()) / 2
            if not L:
                L = L0
            else:
                m = L0 / L
                if not (m.is_integer() and m > 0):
                    raise ValueError("the width of the domain of " +
                                     "{} is not a multiple ".format(self) +
                                     "of the given period")
            x = SR.var('x')
            result = 0
            for domain, f in parameters:
                for interval in domain:
                    a = interval.lower()
                    b = interval.upper()
                    result += (f*sin(pi*x*n/L)).integrate(x, a, b)
            return SR(result/L0).simplify_trig()
Example #40
0
        def fourier_series_partial_sum(self, parameters, variable, N,
                                       L=None):
            r"""
            Returns the partial sum up to a given order of the Fourier series
            of the periodic function `f` extending the piecewise-defined
            function ``self``.

            The Fourier partial sum of order `N` is defined as

            .. MATH::

                S_{N}(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[
                      a_n\cos\left(\frac{n\pi x}{L}\right)
                    + b_n\sin\left(\frac{n\pi x}{L}\right)\right],

            where `L` is the half-period of `f` and the `a_n`'s and `b_n`'s
            are respectively the cosine coefficients and sine coefficients
            of the Fourier series of `f` (cf.
            :meth:`fourier_series_cosine_coefficient` and
            :meth:`fourier_series_sine_coefficient`).

            INPUT:

            - ``N`` -- a positive integer; the order of the partial sum

            - ``L`` -- (default: ``None``) the half-period of `f`; if none
              is provided, `L` is assumed to be the half-width of the domain
              of ``self``

            OUTPUT:

            - the partial sum `S_{N}(x)`, as a symbolic expression

            EXAMPLES:

            A square wave function of period 2::

                sage: f = piecewise([((-1,0), -1), ((0,1), 1)])
                sage: f.fourier_series_partial_sum(5)
                4/5*sin(5*pi*x)/pi + 4/3*sin(3*pi*x)/pi + 4*sin(pi*x)/pi

            If the domain of the piecewise-defined function encompasses
            more than one period, the half-period must be passed as the
            second argument; for instance::

                sage: f2 = piecewise([((-1,0), -1), ((0,1), 1),
                ....:                 ((1,2), -1), ((2,3), 1)])
                sage: bool(f2.restriction((-1,1)) == f)  # f2 extends f on (-1,3)
                True
                sage: f2.fourier_series_partial_sum(5, 1)  # half-period = 1
                4/5*sin(5*pi*x)/pi + 4/3*sin(3*pi*x)/pi + 4*sin(pi*x)/pi
                sage: bool(f2.fourier_series_partial_sum(5, 1) ==
                ....:      f.fourier_series_partial_sum(5))
                True

            The default half-period is 2, so that skipping the second
            argument yields a different result::

                sage: f2.fourier_series_partial_sum(5)  # half-period = 2
                4*sin(pi*x)/pi

            An example of partial sum involving both cosine and sine terms::

                sage: f = piecewise([((-1,0), 0), ((0,1/2), 2*x),
                ....:                ((1/2,1), 2*(1-x))])
                sage: f.fourier_series_partial_sum(5)
                -2*cos(2*pi*x)/pi^2 + 4/25*sin(5*pi*x)/pi^2
                 - 4/9*sin(3*pi*x)/pi^2 + 4*sin(pi*x)/pi^2 + 1/4

            """
            from sage.all import pi, sin, cos, srange
            if not L:
                L = (self.domain().sup() - self.domain().inf()) / 2
            x = self.default_variable()
            a0 = self.fourier_series_cosine_coefficient(0, L)
            result = a0/2 + sum([(self.fourier_series_cosine_coefficient(n, L)*cos(n*pi*x/L) +
                                  self.fourier_series_sine_coefficient(n, L)*sin(n*pi*x/L))
                                 for n in srange(1, N+1)])
            return SR(result).expand()