def tate_factor_Zp(cyc_factor):
    """
    return the factorization of characteristic polynomial
    of Frobenius on Tate classes in H^2 over Zp
    """
    T = cyc_factor.variables()[0]
    p = cyc_factor.leading_coefficient().prime_factors()[0]
    R = Zp(p)
    factorization = []
    for fac, exp in cyc_factor(T / p).factor():
        for fp, ep in fac.change_ring(R).factor():
            factorization.append((fp(p * T).reverse().monic(), exp * ep))
    res = Factorization(factorization)
    assert res.expand().change_ring(R) == cyc_factor.change_ring(R).reverse(
    ).monic(), "%s\n%s" % (res.expand(),
                           cyc_factor.change_ring(R).reverse().monic())
    return res
Example #2
0
def polyquo_knowl(f, disc=None, unit=1, cutoff=None):
    quo = "x^{%s}" % (len(f) - 1)
    i = len(f) - 2
    while i >= 0 and f[i] == 0:
        i -= 1
    if i >= 0: # nonzero terms
        if f[i] > 0:
            quo += r" + \cdots"
        else:
            quo += r" - \cdots"
    short = r'\mathbb{Q}[x]/(%s)'%(quo)
    long = r'Defining polynomial: %s' % (web_latex(coeff_to_poly(f)))
    if cutoff:
        long = make_bigint(long, cutoff, max_width=70).replace('"',"'")
    if disc is not None:
        if isinstance(disc, list):
            long += '\n<br>\nDiscriminant: \\(%s\\)' % (factor_base_factorization_latex(disc))
        else:
            long += '\n<br>\nDiscriminant: \\(%s\\)' % (Factorization(disc, unit=unit)._latex_())
    return r'<a title="[poly]" knowl="dynamic_show" kwargs="%s">\(%s\)</a>'%(long, short)
def rank_fieldextension(frob_polynomial, shift=0):
    """
    Return rank, degree of field extension, and the factorization
    of characteristic polynomial, into twisted cyclotomic factors,
    of the Frobenius action on Tate classes factorized

    Input::
        - frob_polynomial, Frobenius polynomial for H^2
        - shift, an integer, 0 by default, accounting for missing cycles,
        for example when frob_polynomial doesn't include the polarization
    """
    p = frob_polynomial.list()[-1].prime_factors()[0]
    rank = shift
    k = 1
    cyc_factorization = []
    for fac, exp in frob_polynomial.factor():
        ki = fac(fac.variables()[0] / p).is_cyclotomic(certificate=True)
        if ki:
            k = lcm(k, ki)
            cyc_factorization.append((fac, exp))
            rank += fac.degree() * exp
    return rank, k, Factorization(cyc_factorization)
Example #4
0
    def make_curve(self):
        data = self.data = {}
        lmfdb_label = self.lmfdb_label

        # Some data fields of self are just those from the database.
        # These only need some reformatting.

        data['ainvs'] = self.ainvs
        data['conductor'] = N = self.conductor
        data['j_invariant'] = QQ(tuple(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:  # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_latex'] = web_latex(data['j_invariant'])

        # retrieve local reduction data from table ec_localdata:

        self.local_data = local_data = list(
            db.ec_localdata.search({"lmfdb_label": lmfdb_label}))
        for ld in local_data:
            if ld['kodaira_symbol'] <= -14:
                # Work around bug in Sage's latex
                ld['kod'] = 'I_{%s}^{*}' % (-ld['kodaira_symbol'] - 4)
            else:
                ld['kod'] = latex(KodairaSymbol(ld['kodaira_symbol']))

        Nfac = Factorization([(ZZ(ld['prime']), ld['conductor_valuation'])
                              for ld in local_data])
        Dfac = Factorization([(ZZ(ld['prime']), ld['discriminant_valuation'])
                              for ld in local_data],
                             unit=ZZ(self.signD))
        data['disc_factor'] = latex(Dfac)
        data['disc'] = D = Dfac.value()
        data['cond_factor'] = latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        # retrieve data about MW rank, generators, heights and
        # torsion, leading term of L-function & other BSD data from
        # table ec_mwbsd:

        self.make_mwbsd()

        # latex equation:

        latexeqn = latex_equation(self.ainvs)
        data['equation'] = raw_typeset(unlatex(latexeqn), latexeqn)

        # minimal quadratic twist:

        data['minq_D'] = minqD = self.min_quad_twist_disc
        data['minq_label'] = db.ec_curvedata.lucky(
            {'ainvs': self.min_quad_twist_ainvs},
            projection='lmfdb_label'
            if self.label_type == 'LMFDB' else 'Clabel')
        data['minq_info'] = '(itself)' if minqD == 1 else '(by {})'.format(
            minqD)

        # modular degree:

        try:
            data['degree'] = ZZ(self.degree)  # convert None to 0
        except AttributeError:  # if not computed, db has Null and the attribute is missing
            data['degree'] = 0  # invalid, but will be displayed nicely

        # coefficients of modular form / L-series:

        classdata = db.ec_classdata.lookup(self.lmfdb_iso)
        data['an'] = classdata['anlist']
        data['ap'] = classdata['aplist']

        # mod-p Galois images:

        data['galois_data'] = list(
            db.ec_galrep.search({'lmfdb_label': lmfdb_label}))
        for gd in data[
                'galois_data']:  # remove the prime prefix from each image code
            gd['image'] = trim_galois_image_code(gd['image'])

        # CM and Endo ring:

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = r"\(\Z\)"
        if self.cm:
            data['cm_ramp'] = [
                p for p in ZZ(self.cm).support() if not p in self.nonmax_primes
            ]
            data['cm_nramp'] = len(data['cm_ramp'])
            if data['cm_nramp'] == 1:
                data['cm_ramp'] = data['cm_ramp'][0]
            else:
                data['cm_ramp'] = ", ".join(str(p) for p in data['cm_ramp'])
            data['cm_sqf'] = ZZ(self.cm).squarefree_part()

            data['CM'] = r"yes (\(D=%s\))" % data['CMD']
            if data['CMD'] % 4 == 0:
                d4 = ZZ(data['CMD']) // 4
                data['EndE'] = r"\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = r"\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = st_link_by_name(1, 2, 'N(U(1))')
        else:
            data['ST'] = st_link_by_name(1, 2, 'SU(2)')

        # Isogeny degrees:

        cond, iso, num = split_lmfdb_label(lmfdb_label)
        self.class_deg = classdata['class_deg']
        self.one_deg = ZZ(self.class_deg).is_prime()
        isodegs = [str(d) for d in self.isogeny_degrees if d > 1]
        if len(isodegs) < 3:
            data['isogeny_degrees'] = " and ".join(isodegs)
        else:
            data['isogeny_degrees'] = " and ".join(
                [", ".join(isodegs[:-1]), isodegs[-1]])

        self.make_twoadic_data()

        # Optimality

        # The optimal curve in the class is the curve whose Cremona
        # label ends in '1' except for '990h' which was labelled
        # wrongly long ago. This is proved for N up to
        # OPTIMALITY_BOUND (and when there is only one curve in an
        # isogeny class, obviously) and expected for all N.

        # Column 'optimality' is 1 for certainly optimal curves, 0 for
        # certainly non-optimal curves, and is n>1 if the curve is one
        # of n in the isogeny class which may be optimal given current
        # knowledge.

        # Column "manin_constant' is the correct Manin constant
        # assuming that the optimal curve in the class is known, or
        # otherwise if it is the curve with (Cremona) number 1.

        # The code here allows us to update the display correctly by
        # changing one line in this file (defining OPTIMALITY_BOUND)
        # without changing the data.

        data['optimality_bound'] = OPTIMALITY_BOUND
        self.cremona_bound = CREMONA_BOUND
        if N < CREMONA_BOUND:
            data[
                'manin_constant'] = self.manin_constant  # (conditional on data['optimality_known'])
        else:
            data['manin_constant'] = 0  # (meaning not available)

        if N < OPTIMALITY_BOUND:

            data['optimality_code'] = int(
                self.Cnumber == (3 if self.Ciso == '990h' else 1))
            data['optimality_known'] = True
            data['manin_known'] = True
            if self.label_type == 'Cremona':
                data[
                    'optimal_label'] = '990h3' if self.Ciso == '990h' else self.Ciso + '1'
            else:
                data[
                    'optimal_label'] = '990.i3' if self.lmfdb_iso == '990.i' else self.lmfdb_iso + '1'

        elif N < CREMONA_BOUND:

            data['optimality_code'] = self.optimality
            data['optimality_known'] = (self.optimality < 2)

            if self.optimality == 1:
                data['manin_known'] = True
                data[
                    'optimal_label'] = self.Clabel if self.label_type == 'Cremona' else self.lmfdb_label
            else:
                if self.Cnumber == 1:
                    data['manin_known'] = False
                    data[
                        'optimal_label'] = self.Clabel if self.label_type == 'Cremona' else self.lmfdb_label
                else:
                    # find curve #1 in this class and its optimailty code:
                    opt_curve = db.ec_curvedata.lucky(
                        {
                            'Ciso': self.Ciso,
                            'Cnumber': 1
                        },
                        projection=['Clabel', 'lmfdb_label', 'optimality'])
                    data['manin_known'] = (opt_curve['optimality'] == 1)
                    data['optimal_label'] = opt_curve[
                        'Clabel' if self.label_type ==
                        'Cremona' else 'lmfdb_label']

        else:
            data['optimality_code'] = None
            data['optimality_known'] = False
            data['manin_known'] = False
            data['optimal_label'] = ''

        # p-adic data:

        data['p_adic_primes'] = [
            p for i, p in enumerate(prime_range(5, 100))
            if (N * data['ap'][i]) % p != 0
        ]

        data['p_adic_data_exists'] = False
        if data['optimality_code'] == 1:
            data['p_adic_data_exists'] = db.ec_padic.exists(
                {'lmfdb_iso': self.lmfdb_iso})

        # Iwasawa data (where present)

        self.make_iwasawa()

        # Torsion growth data (where present)

        self.make_torsion_growth()

        # Newform

        rawnewform = str(PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform'] = raw_typeset(
            rawnewform,
            web_latex(PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True)))
        data['newform_label'] = self.newform_label = ".".join(
            [str(cond), str(2), 'a', iso])
        self.newform_link = url_for("cmf.by_url_newform_label",
                                    level=cond,
                                    weight=2,
                                    char_orbit_label='a',
                                    hecke_orbit=iso)
        self.newform_exists_in_db = db.mf_newforms.label_exists(
            self.newform_label)
        self._code = None

        if self.label_type == 'Cremona':
            self.class_url = url_for(".by_ec_label", label=self.Ciso)
            self.class_name = self.Ciso
        else:
            self.class_url = url_for(".by_ec_label", label=self.lmfdb_iso)
            self.class_name = self.lmfdb_iso
        data['class_name'] = self.class_name
        data['Cnumber'] = self.Cnumber if N < CREMONA_BOUND else None

        self.friends = [('Isogeny class ' + self.class_name, self.class_url),
                        ('Minimal quadratic twist %s %s' %
                         (data['minq_info'], data['minq_label']),
                         url_for(".by_ec_label", label=data['minq_label'])),
                        ('All twists ',
                         url_for(".rational_elliptic_curves",
                                 jinv=data['j_invariant']))]

        lfun_url = url_for("l_functions.l_function_ec_page",
                           conductor_label=N,
                           isogeny_class_label=iso)
        origin_url = lfun_url.lstrip('/L/').rstrip('/')

        if db.lfunc_instances.exists({'url': origin_url}):
            self.friends += [('L-function', lfun_url)]
        else:
            self.friends += [('L-function not available', "")]

        if not self.cm:
            if N <= 300:
                self.friends += [('Symmetric square L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='2',
                                          conductor=N,
                                          isogeny=iso))]
            if N <= 50:
                self.friends += [('Symmetric cube L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='3',
                                          conductor=N,
                                          isogeny=iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label,
                              self.newform_link)]

        self.downloads = [('q-expansion to text',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_label,
                                   limit=1000)),
                          ('All stored data to text',
                           url_for(".download_EC_all",
                                   label=self.lmfdb_label)),
                          ('Code to Magma',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='magma')),
                          ('Code to SageMath',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='sage')),
                          ('Code to GP',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='gp'))]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())

        self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format(
            self.plot)
        self.properties = [
            ('Label', self.Clabel
             if self.label_type == 'Cremona' else self.lmfdb_label),
            (None, self.plot_link),
            ('Conductor', prop_int_pretty(data['conductor'])),
            ('Discriminant', prop_int_pretty(data['disc'])),
            ('j-invariant', '%s' % data['j_inv_latex']),
            ('CM', '%s' % data['CM']),
            ('Rank', 'unknown' if self.mwbsd['rank'] == '?' else
             prop_int_pretty(self.mwbsd['rank'])),
            ('Torsion structure', (r'\(%s\)' % self.mwbsd['tor_struct'])
             if self.mwbsd['tor_struct'] else 'trivial'),
        ]

        if self.label_type == 'Cremona':
            self.title = "Elliptic curve with Cremona label {} (LMFDB label {})".format(
                self.Clabel, self.lmfdb_label)
        elif N < CREMONA_BOUND:
            self.title = "Elliptic curve with LMFDB label {} (Cremona label {})".format(
                self.lmfdb_label, self.Clabel)
        else:
            self.title = "Elliptic curve with LMFDB label {}".format(
                self.lmfdb_label)

        self.bread = [('Elliptic curves', url_for("ecnf.index")),
                      (r'$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso,
                       url_for(".by_double_iso_label",
                               conductor=N,
                               iso_label=iso)), ('%s' % num, ' ')]
Example #5
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these.

        # Old version: required constructing the actual elliptic curve
        # E, and computing some further data about it.

        # New version (May 2016): extra data fields now in the
        # database so we do not have to construct the curve or do any
        # computation with it on the fly.  As a failsafe the old way
        # is still included.

        data = self.data = {}
        data['ainvs'] = [ZZ(ai) for ai in self.ainvs]
        data['conductor'] = N = ZZ(self.conductor)
        data['j_invariant'] = QQ(str(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:  # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])

        # extract data about MW rank, generators, heights and torsion:
        self.make_mw()

        # get more data from the database entry

        data['equation'] = self.equation
        local_data = self.local_data
        D = self.signD * prod([ld['p']**ld['ord_disc'] for ld in local_data])
        for ld in local_data:
            ld['kod'] = ld['kod'].replace("\\\\", "\\")
        data['disc'] = D
        Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond'])
                              for ld in local_data])
        Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc'])
                              for ld in local_data],
                             unit=ZZ(self.signD))

        data['minq_D'] = minqD = self.min_quad_twist['disc']
        data['minq_label'] = self.min_quad_twist[
            'lmfdb_label'] if self.label_type == 'LMFDB' else self.min_quad_twist[
                'label']
        data['minq_info'] = '(itself)' if minqD == 1 else '(by {})'.format(
            minqD)

        if self.degree is None:
            data['degree'] = 0  # invalid, but will be displayed nicely
        else:
            data['degree'] = self.degree

        try:
            data['an'] = self.anlist
            data['ap'] = self.aplist
        except AttributeError:
            r = db.ec_curves.lucky({'lmfdb_iso': self.lmfdb_iso, 'number': 1})
            data['an'] = r['anlist']
            data['ap'] = r['aplist']

        data['disc_factor'] = latex(Dfac)
        data['cond_factor'] = latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        data['galois_images'] = [
            trim_galois_image_code(s) for s in self.mod_p_images
        ]
        data['non_maximal_primes'] = self.non_maximal_primes
        data['galois_data'] = [{
            'p': p,
            'image': im
        } for p, im in zip(data['non_maximal_primes'], data['galois_images'])]

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['cm_ramp'] = [
                p for p in ZZ(self.cm).support()
                if not p in self.non_maximal_primes
            ]
            data['cm_nramp'] = len(data['cm_ramp'])
            if data['cm_nramp'] == 1:
                data['cm_ramp'] = data['cm_ramp'][0]
            else:
                data['cm_ramp'] = ", ".join([str(p) for p in data['cm_ramp']])
            data['cm_sqf'] = ZZ(self.cm).squarefree_part()

            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD'] % 4 == 0:
                d4 = ZZ(data['CMD']) // 4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = st_link_by_name(1, 2, 'N(U(1))')
        else:
            data['ST'] = st_link_by_name(1, 2, 'SU(2)')

        data['p_adic_primes'] = [
            p for i, p in enumerate(prime_range(5, 100))
            if (N * data['ap'][i]) % p != 0
        ]

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        self.one_deg = ZZ(self.class_deg).is_prime()
        isodegs = [str(d) for d in self.isogeny_degrees if d > 1]
        if len(isodegs) < 3:
            data['isogeny_degrees'] = " and ".join(isodegs)
        else:
            data['isogeny_degrees'] = " and ".join(
                [", ".join(isodegs[:-1]), isodegs[-1]])

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join(
                [latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data[
                'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"

        # Leading term of L-function & other BSD data
        self.make_bsd()

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago): this is proved for N up to
        # OPTIMALITY_BOUND (and when there is only one curve in an
        # isogeny class, obviously) and expected for all N.

        # Column 'optimality' is 1 for certainly optimal curves, 0 for
        # certainly non-optimal curves, and is n>1 if the curve is one
        # of n in the isogeny class which may be optimal given current
        # knowledge.

        # Column "manin_constant' is the correct Manin constant
        # assuming that the optimal curve in the class is known, or
        # otherwise if it is the curve with (Cremona) number 1.

        # The code here allows us to update the display correctly by
        # changing one line in this file (defining OPTIMALITY_BOUND)
        # without changing the data.

        data['optimality_bound'] = OPTIMALITY_BOUND
        data[
            'manin_constant'] = self.manin_constant  # (conditional on data['optimality_known'])

        if N < OPTIMALITY_BOUND:

            data['optimality_code'] = int(
                self.number == (3 if self.iso == '990h' else 1))
            data['optimality_known'] = True
            data['manin_known'] = True
            if self.label_type == 'Cremona':
                data[
                    'optimal_label'] = '990h3' if self.iso == '990h' else self.iso + '1'
            else:
                data[
                    'optimal_label'] = '990.i3' if self.lmfdb_iso == '990.i' else self.lmfdb_iso + '1'

        else:

            data['optimality_code'] = self.optimality
            data['optimality_known'] = (self.optimality < 2)

            if self.optimality == 1:
                data['manin_known'] = True
                data[
                    'optimal_label'] = self.label if self.label_type == 'Cremona' else self.lmfdb_label
            else:
                if self.number == 1:
                    data['manin_known'] = False
                    data[
                        'optimal_label'] = self.label if self.label_type == 'Cremona' else self.lmfdb_label
                else:
                    # find curve #1 in this class and its optimailty code:
                    opt_curve = db.ec_curves.lucky(
                        {
                            'iso': self.iso,
                            'number': 1
                        },
                        projection=['label', 'lmfdb_label', 'optimality'])
                    data['manin_known'] = (opt_curve['optimality'] == 1)
                    data['optimal_label'] = opt_curve[
                        'label' if self.label_type ==
                        'Cremona' else 'lmfdb_label']

        data['p_adic_data_exists'] = False
        if data['optimality_code'] == 1:
            data['p_adic_data_exists'] = db.ec_padic.exists(
                {'lmfdb_iso': self.lmfdb_iso})

        # Iwasawa data (where present)

        self.make_iwasawa()

        # Torsion growth data (where present)

        self.make_torsion_growth()

        data['newform'] = web_latex(
            PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform_label'] = self.newform_label = ".".join(
            [str(cond), str(2), 'a', iso])
        self.newform_link = url_for("cmf.by_url_newform_label",
                                    level=cond,
                                    weight=2,
                                    char_orbit_label='a',
                                    hecke_orbit=iso)
        self.newform_exists_in_db = db.mf_newforms.label_exists(
            self.newform_label)
        self._code = None

        if self.label_type == 'Cremona':
            self.class_url = url_for(".by_ec_label", label=self.iso)
            self.class_name = self.iso
        else:
            self.class_url = url_for(".by_double_iso_label",
                                     conductor=N,
                                     iso_label=iso)
            self.class_name = self.lmfdb_iso
        data['class_name'] = self.class_name
        data['number'] = self.number

        self.friends = [('Isogeny class ' + self.class_name, self.class_url),
                        ('Minimal quadratic twist %s %s' %
                         (data['minq_info'], data['minq_label']),
                         url_for(".by_ec_label", label=data['minq_label'])),
                        ('All twists ',
                         url_for(".rational_elliptic_curves", jinv=self.jinv))]

        lfun_url = url_for("l_functions.l_function_ec_page",
                           conductor_label=N,
                           isogeny_class_label=iso)
        origin_url = lfun_url.lstrip('/L/').rstrip('/')

        if db.lfunc_instances.exists({'url': origin_url}):
            self.friends += [('L-function', lfun_url)]
        else:
            self.friends += [('L-function not available', "")]

        if not self.cm:
            if N <= 300:
                self.friends += [('Symmetric square L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='2',
                                          conductor=N,
                                          isogeny=iso))]
            if N <= 50:
                self.friends += [('Symmetric cube L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='3',
                                          conductor=N,
                                          isogeny=iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label,
                              self.newform_link)]

        self.downloads = [('q-expansion to text',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_label,
                                   limit=1000)),
                          ('All stored data to text',
                           url_for(".download_EC_all",
                                   label=self.lmfdb_label)),
                          ('Code to Magma',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='magma')),
                          ('Code to SageMath',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='sage')),
                          ('Code to GP',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='gp'))]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())

        self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format(
            self.plot)
        self.properties = [
            ('Label',
             self.label if self.label_type == 'Cremona' else self.lmfdb_label),
            (None, self.plot_link), ('Conductor', '%s' % data['conductor']),
            ('Discriminant', '%s' % data['disc']),
            ('j-invariant', '%s' % data['j_inv_latex']),
            ('CM', '%s' % data['CM']), ('Rank', '%s' % self.mw['rank']),
            ('Torsion Structure', '\(%s\)' % self.mw['tor_struct'])
        ]

        if self.label_type == 'Cremona':
            self.title = "Elliptic Curve with Cremona label {} (LMFDB label {})".format(
                self.label, self.lmfdb_label)
        else:
            self.title = "Elliptic Curve with LMFDB label {} (Cremona label {})".format(
                self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso,
                       url_for(".by_double_iso_label",
                               conductor=N,
                               iso_label=iso)), ('%s' % num, ' ')]
Example #6
0
    def make_E(self):
        K = self.field.K()

        # a-invariants
        self.ainvs = parse_ainvs(K, self.ainvs)
        self.latex_ainvs = web_latex(self.ainvs)
        self.numb = str(self.number)

        # Conductor, discriminant, j-invariant
        N = ideal_from_string(K, self.conductor_ideal)
        self.cond = web_latex(N)
        self.cond_norm = web_latex(self.conductor_norm)
        local_data = self.local_data

        # NB badprimes is a list of primes which divide the
        # discriminant of this model.  At most one of these might
        # actually be a prime of good reduction, if the curve has no
        # global minimal model.
        badprimes = [ideal_from_string(K, ld['p']) for ld in local_data]
        badnorms = [ZZ(ld['normp']) for ld in local_data]
        mindisc_ords = [ld['ord_disc'] for ld in local_data]

        # Assumption: the curve models stored in the database are
        # either global minimal models or minimal at all but one
        # prime, so the list here has length 0 or 1:

        self.non_min_primes = [ideal_from_string(K, P) for P in self.non_min_p]
        self.is_minimal = (len(self.non_min_primes) == 0)
        self.has_minimal_model = self.is_minimal
        disc_ords = [ld['ord_disc'] for ld in local_data]
        if not self.is_minimal:
            Pmin = self.non_min_primes[0]
            P_index = badprimes.index(Pmin)
            self.non_min_prime = web_latex(Pmin)
            disc_ords[P_index] += 12

        if self.conductor_norm == 1:  # since the factorization of (1) displays as "1"
            self.fact_cond = self.cond
            self.fact_cond_norm = self.cond
        else:
            Nfac = Factorization([(P, ld['ord_cond'])
                                  for P, ld in zip(badprimes, local_data)])
            self.fact_cond = web_latex_ideal_fact(Nfac)
            Nnormfac = Factorization([(q, ld['ord_cond'])
                                      for q, ld in zip(badnorms, local_data)])
            self.fact_cond_norm = web_latex(Nnormfac)

        # D is the discriminant ideal of the model
        D = prod([P**e for P, e in zip(badprimes, disc_ords)], K.ideal(1))
        self.disc = web_latex(D)
        Dnorm = D.norm()
        self.disc_norm = web_latex(Dnorm)
        if Dnorm == 1:  # since the factorization of (1) displays as "1"
            self.fact_disc = self.disc
            self.fact_disc_norm = self.disc
        else:
            Dfac = Factorization([(P, e)
                                  for P, e in zip(badprimes, disc_ords)])
            self.fact_disc = web_latex_ideal_fact(Dfac)
            Dnormfac = Factorization([(q, e)
                                      for q, e in zip(badnorms, disc_ords)])
            self.fact_disc_norm = web_latex(Dnormfac)

        if not self.is_minimal:
            Dmin = ideal_from_string(K, self.minD)
            self.mindisc = web_latex(Dmin)
            Dmin_norm = Dmin.norm()
            self.mindisc_norm = web_latex(Dmin_norm)
            if Dmin_norm == 1:  # since the factorization of (1) displays as "1"
                self.fact_mindisc = self.mindisc
                self.fact_mindisc_norm = self.mindisc
            else:
                Dminfac = Factorization([
                    (P, e) for P, edd in zip(badprimes, mindisc_ords)
                ])
                self.fact_mindisc = web_latex_ideal_fact(Dminfac)
                Dminnormfac = Factorization([
                    (q, e) for q, e in zip(badnorms, mindisc_ords)
                ])
                self.fact_mindisc_norm = web_latex(Dminnormfac)

        j = self.field.parse_NFelt(self.jinv)
        # if j:
        #     d = j.denominator()
        #     n = d * j  # numerator exists for quadratic fields only!
        #     g = GCD(list(n))
        #     n1 = n / g
        #     self.j = web_latex(n1)
        #     if d != 1:
        #         if n1 > 1:
        #         # self.j = "("+self.j+")\(/\)"+web_latex(d)
        #             self.j = web_latex(r"\frac{%s}{%s}" % (self.j, d))
        #         else:
        #             self.j = web_latex(d)
        #         if g > 1:
        #             if n1 > 1:
        #                 self.j = web_latex(g) + self.j
        #             else:
        #                 self.j = web_latex(g)
        self.j = web_latex(j)

        self.fact_j = None
        # See issue 1258: some j factorizations work but take too long
        # (e.g. EllipticCurve/6.6.371293.1/1.1/a/1).  Note that we do
        # store the factorization of the denominator of j and display
        # that, which is the most interesting part.

        # Images of Galois representations

        if not hasattr(self, 'galois_images'):
            #print "No Galois image data"
            self.galois_images = "?"
            self.non_surjective_primes = "?"
            self.galois_data = []
        else:
            self.galois_data = [{
                'p': p,
                'image': im
            } for p, im in zip(self.non_surjective_primes, self.galois_images)]

        # CM and End(E)
        self.cm_bool = "no"
        self.End = "\(\Z\)"
        if self.cm:
            self.rational_cm = K(self.cm).is_square()
            self.cm_sqf = ZZ(self.cm).squarefree_part()
            self.cm_bool = "yes (\(%s\))" % self.cm
            if self.cm % 4 == 0:
                d4 = ZZ(self.cm) // 4
                self.End = "\(\Z[\sqrt{%s}]\)" % (d4)
            else:
                self.End = "\(\Z[(1+\sqrt{%s})/2]\)" % self.cm

        # Galois images in CM case:
        if self.cm and self.galois_images != '?':
            self.cm_ramp = [
                p for p in ZZ(self.cm).support()
                if not p in self.non_surjective_primes
            ]
            self.cm_nramp = len(self.cm_ramp)
            if self.cm_nramp == 1:
                self.cm_ramp = self.cm_ramp[0]
            else:
                self.cm_ramp = ", ".join([str(p) for p in self.cm_ramp])

        # Sato-Tate:
        # The lines below will need to change once we have curves over non-quadratic fields
        # that contain the Hilbert class field of an imaginary quadratic field
        if self.cm:
            if self.signature == [0, 1] and ZZ(
                    -self.abs_disc * self.cm).is_square():
                self.ST = st_link_by_name(1, 2, 'U(1)')
            else:
                self.ST = st_link_by_name(1, 2, 'N(U(1))')
        else:
            self.ST = st_link_by_name(1, 2, 'SU(2)')

        # Q-curve / Base change
        self.qc = "no"
        try:
            if self.q_curve:
                self.qc = "yes"
        except AttributeError:  # in case the db entry does not have this field set
            pass

        # Torsion
        self.ntors = web_latex(self.torsion_order)
        self.tr = len(self.torsion_structure)
        if self.tr == 0:
            self.tor_struct_pretty = "Trivial"
        if self.tr == 1:
            self.tor_struct_pretty = "\(\Z/%s\Z\)" % self.torsion_structure[0]
        if self.tr == 2:
            self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple(
                self.torsion_structure)

        torsion_gens = [parse_point(K, P) for P in self.torsion_gens]
        self.torsion_gens = ",".join([web_point(P) for P in torsion_gens])

        # Rank or bounds
        try:
            self.rk = web_latex(self.rank)
        except AttributeError:
            self.rk = "?"
        try:
            self.rk_bnds = "%s...%s" % tuple(self.rank_bounds)
        except AttributeError:
            self.rank_bounds = [0, Infinity]
            self.rk_bnds = "not available"

        # Generators
        try:
            gens = [parse_point(K, P) for P in self.gens]
            self.gens = ", ".join([web_point(P) for P in gens])
            if self.rk == "?":
                self.reg = "not available"
            else:
                if gens:
                    try:
                        self.reg = self.reg
                    except AttributeError:
                        self.reg = "not available"
                    pass  # self.reg already set
                else:
                    self.reg = 1  # otherwise we only get 1.00000...

        except AttributeError:
            self.gens = "not available"
            self.reg = "not available"
            try:
                if self.rank == 0:
                    self.reg = 1
            except AttributeError:
                pass

        # Local data
        for P, ld in zip(badprimes, local_data):
            ld['p'] = web_latex(P)
            ld['norm'] = P.norm()
            ld['kod'] = web_latex(ld['kod']).replace('$', '')

        # URLs of self and related objects:
        self.urls = {}
        # It's useful to be able to use this class out of context, when calling url_for will fail:
        try:
            self.urls['curve'] = url_for(".show_ecnf",
                                         nf=self.field_label,
                                         conductor_label=quote(
                                             self.conductor_label),
                                         class_label=self.iso_label,
                                         number=self.number)
        except RuntimeError:
            return
        self.urls['class'] = url_for(".show_ecnf_isoclass",
                                     nf=self.field_label,
                                     conductor_label=quote(
                                         self.conductor_label),
                                     class_label=self.iso_label)
        self.urls['conductor'] = url_for(".show_ecnf_conductor",
                                         nf=self.field_label,
                                         conductor_label=quote(
                                             self.conductor_label))
        self.urls['field'] = url_for(".show_ecnf1", nf=self.field_label)

        # Isogeny information

        if self.number == 1:
            isogmat = self.isogeny_matrix
        else:
            isogmat = db_ecnf().find_one({
                'class_label': self.class_label,
                'number': 1
            })['isogeny_matrix']
        self.class_deg = max([max(d) for d in isogmat])
        self.one_deg = ZZ(self.class_deg).is_prime()
        self.ncurves = db_ecnf().count({'class_label': self.class_label})
        isodegs = [str(d) for d in self.isogeny_degrees if d > 1]
        if len(isodegs) < 3:
            self.isogeny_degrees = " and ".join(isodegs)
        else:
            self.isogeny_degrees = " and ".join(
                [", ".join(isodegs[:-1]), isodegs[-1]])

        sig = self.signature
        totally_real = sig[1] == 0
        imag_quadratic = sig == [0, 1]

        if totally_real:
            self.hmf_label = "-".join(
                [self.field.label, self.conductor_label, self.iso_label])
            self.urls['hmf'] = url_for('hmf.render_hmf_webpage',
                                       field_label=self.field.label,
                                       label=self.hmf_label)
            self.urls['Lfunction'] = url_for("l_functions.l_function_hmf_page",
                                             field=self.field_label,
                                             label=self.hmf_label,
                                             character='0',
                                             number='0')

        if imag_quadratic:
            self.bmf_label = "-".join(
                [self.field.label, self.conductor_label, self.iso_label])
            self.bmf_url = url_for('bmf.render_bmf_webpage',
                                   field_label=self.field_label,
                                   level_label=self.conductor_label,
                                   label_suffix=self.iso_label)

        self.friends = []
        self.friends += [('Isogeny class ' + self.short_class_label,
                          self.urls['class'])]
        self.friends += [('Twists',
                          url_for('ecnf.index',
                                  field=self.field_label,
                                  jinv=rename_j(j)))]
        if totally_real:
            self.friends += [('Hilbert Modular Form ' + self.hmf_label,
                              self.urls['hmf'])]
            self.friends += [('L-function', self.urls['Lfunction'])]
        if imag_quadratic:
            #self.friends += [('Bianchi Modular Form %s not available' % self.bmf_label, '')]
            if "CM" in self.label:
                self.friends += [('Bianchi Modular Form is not cuspidal', '')]
            else:
                self.friends += [('Bianchi Modular Form %s' % self.bmf_label,
                                  self.bmf_url)]

        self.properties = [('Base field', self.field.field_pretty()),
                           ('Label', self.label)]

        # Plot
        if K.signature()[0]:
            self.plot = encode_plot(
                EC_nf_plot(K, self.ainvs, self.field.generator_name()))
            self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
            self.properties += [(None, self.plot_link)]

        self.properties += [
            ('Conductor', self.cond),
            ('Conductor norm', self.cond_norm),
            # See issue #796 for why this is hidden (can be very large)
            # ('j-invariant', self.j),
            ('CM', self.cm_bool)
        ]

        if self.base_change:
            self.properties += [
                ('base-change',
                 'yes: %s' % ','.join([str(lab) for lab in self.base_change]))
            ]
        else:
            self.base_change = []  # in case it was False instead of []
            self.properties += [('Q-curve', self.qc)]

        r = self.rk
        if r == "?":
            r = self.rk_bnds
        self.properties += [
            ('Torsion order', self.ntors),
            ('Rank', r),
        ]

        for E0 in self.base_change:
            self.friends += [('Base-change of %s /\(\Q\)' % E0,
                              url_for("ec.by_ec_label", label=E0))]

        self._code = None  # will be set if needed by get_code()
Example #7
0
    def make_E(self):
        #print("Creating ECNF object for {}".format(self.label))
        #sys.stdout.flush()
        K = self.field.K()

        # a-invariants
        self.ainvs = parse_ainvs(K, self.ainvs)
        self.latex_ainvs = web_latex(self.ainvs)
        self.numb = str(self.number)

        # Conductor, discriminant, j-invariant
        if self.conductor_norm == 1:
            N = K.ideal(1)
        else:
            N = ideal_from_string(K, self.conductor_ideal)
        # The following can trigger expensive computations!
        #self.cond = web_latex(N)
        self.cond = pretty_ideal(N)
        self.cond_norm = web_latex(self.conductor_norm)
        local_data = self.local_data

        # NB badprimes is a list of primes which divide the
        # discriminant of this model.  At most one of these might
        # actually be a prime of good reduction, if the curve has no
        # global minimal model.
        badprimes = [ideal_from_string(K, ld['p']) for ld in local_data]
        badnorms = [ZZ(ld['normp']) for ld in local_data]
        mindisc_ords = [ld['ord_disc'] for ld in local_data]

        # Assumption: the curve models stored in the database are
        # either global minimal models or minimal at all but one
        # prime, so the list here has length 0 or 1:

        self.non_min_primes = [ideal_from_string(K, P) for P in self.non_min_p]
        self.is_minimal = (len(self.non_min_primes) == 0)
        self.has_minimal_model = self.is_minimal
        disc_ords = [ld['ord_disc'] for ld in local_data]
        if not self.is_minimal:
            Pmin = self.non_min_primes[0]
            P_index = badprimes.index(Pmin)
            self.non_min_prime = pretty_ideal(Pmin)
            disc_ords[P_index] += 12

        if self.conductor_norm == 1:  # since the factorization of (1) displays as "1"
            self.fact_cond = self.cond
            self.fact_cond_norm = '1'
        else:
            Nfac = Factorization([(P, ld['ord_cond'])
                                  for P, ld in zip(badprimes, local_data)])
            self.fact_cond = web_latex_ideal_fact(Nfac)
            Nnormfac = Factorization([(q, ld['ord_cond'])
                                      for q, ld in zip(badnorms, local_data)])
            self.fact_cond_norm = web_latex(Nnormfac)

        # D is the discriminant ideal of the model
        D = prod([P**e for P, e in zip(badprimes, disc_ords)], K.ideal(1))
        self.disc = pretty_ideal(D)
        Dnorm = D.norm()
        self.disc_norm = web_latex(Dnorm)
        if Dnorm == 1:  # since the factorization of (1) displays as "1"
            self.fact_disc = self.disc
            self.fact_disc_norm = '1'
        else:
            Dfac = Factorization([(P, e)
                                  for P, e in zip(badprimes, disc_ords)])
            self.fact_disc = web_latex_ideal_fact(Dfac)
            Dnormfac = Factorization([(q, e)
                                      for q, e in zip(badnorms, disc_ords)])
            self.fact_disc_norm = web_latex(Dnormfac)

        if not self.is_minimal:
            Dmin = ideal_from_string(K, self.minD)
            self.mindisc = pretty_ideal(Dmin)
            Dmin_norm = Dmin.norm()
            self.mindisc_norm = web_latex(Dmin_norm)
            if Dmin_norm == 1:  # since the factorization of (1) displays as "1"
                self.fact_mindisc = self.mindisc
                self.fact_mindisc_norm = self.mindisc_norm
            else:
                Dminfac = Factorization(list(zip(badprimes, mindisc_ords)))
                self.fact_mindisc = web_latex_ideal_fact(Dminfac)
                Dminnormfac = Factorization(list(zip(badnorms, mindisc_ords)))
                self.fact_mindisc_norm = web_latex(Dminnormfac)

        j = self.field.parse_NFelt(self.jinv)
        # if j:
        #     d = j.denominator()
        #     n = d * j  # numerator exists for quadratic fields only!
        #     g = GCD(list(n))
        #     n1 = n / g
        #     self.j = web_latex(n1)
        #     if d != 1:
        #         if n1 > 1:
        #         # self.j = "("+self.j+")\(/\)"+web_latex(d)
        #             self.j = web_latex(r"\frac{%s}{%s}" % (self.j, d))
        #         else:
        #             self.j = web_latex(d)
        #         if g > 1:
        #             if n1 > 1:
        #                 self.j = web_latex(g) + self.j
        #             else:
        #                 self.j = web_latex(g)
        self.j = web_latex(j)

        self.fact_j = None
        # See issue 1258: some j factorizations work but take too long
        # (e.g. EllipticCurve/6.6.371293.1/1.1/a/1).  Note that we do
        # store the factorization of the denominator of j and display
        # that, which is the most interesting part.

        # The equation is stored in the database as a latex string.
        # Some of these have extraneous double quotes at beginning and
        # end, shich we fix here.  We also strip out initial \( and \)
        # (if present) which are added in the template.
        self.equation = self.equation.replace('"', '').replace('\\(',
                                                               '').replace(
                                                                   '\\)', '')

        # Images of Galois representations

        if not hasattr(self, 'galois_images'):
            #print "No Galois image data"
            self.galois_images = "?"
            self.non_surjective_primes = "?"
            self.galois_data = []
        else:
            self.galois_data = [{
                'p': p,
                'image': im
            } for p, im in zip(self.non_surjective_primes, self.galois_images)]

        # CM and End(E)
        self.cm_bool = "no"
        self.End = r"\(\Z\)"
        if self.cm:
            # When we switch to storing rational cm by having |D| in
            # the column, change the following lines:
            if self.cm > 0:
                self.rational_cm = True
                self.cm = -self.cm
            else:
                self.rational_cm = K(self.cm).is_square()
            self.cm_sqf = ZZ(self.cm).squarefree_part()
            self.cm_bool = r"yes (\(%s\))" % self.cm
            if self.cm % 4 == 0:
                d4 = ZZ(self.cm) // 4
                self.End = r"\(\Z[\sqrt{%s}]\)" % (d4)
            else:
                self.End = r"\(\Z[(1+\sqrt{%s})/2]\)" % self.cm

        # Galois images in CM case:
        if self.cm and self.galois_images != '?':
            self.cm_ramp = [
                p for p in ZZ(self.cm).support()
                if not p in self.non_surjective_primes
            ]
            self.cm_nramp = len(self.cm_ramp)
            if self.cm_nramp == 1:
                self.cm_ramp = self.cm_ramp[0]
            else:
                self.cm_ramp = ", ".join([str(p) for p in self.cm_ramp])

        # Sato-Tate:
        # The lines below will need to change once we have curves over non-quadratic fields
        # that contain the Hilbert class field of an imaginary quadratic field
        if self.cm:
            if self.signature == [0, 1] and ZZ(
                    -self.abs_disc * self.cm).is_square():
                self.ST = st_link_by_name(1, 2, 'U(1)')
            else:
                self.ST = st_link_by_name(1, 2, 'N(U(1))')
        else:
            self.ST = st_link_by_name(1, 2, 'SU(2)')

        # Q-curve / Base change
        try:
            qc = self.q_curve
            if qc is True:
                self.qc = "yes"
            elif qc is False:
                self.qc = "no"
            else:  # just in case
                self.qc = "not determined"
        except AttributeError:
            self.qc = "not determined"

        # Torsion
        self.ntors = web_latex(self.torsion_order)
        self.tr = len(self.torsion_structure)
        if self.tr == 0:
            self.tor_struct_pretty = "trivial"
        if self.tr == 1:
            self.tor_struct_pretty = r"\(\Z/%s\Z\)" % self.torsion_structure[0]
        if self.tr == 2:
            self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple(
                self.torsion_structure)

        self.torsion_gens = [
            web_point(parse_point(K, P)) for P in self.torsion_gens
        ]

        # BSD data
        #
        # We divide into 3 cases, based on rank_bounds [lb,ub],
        # analytic_rank ar, (lb=ngens always).  The flag
        # self.bsd_status is set to one of the following:
        #
        # "unconditional"
        #     lb=ar=ub: we always have reg but in some cases over sextic fields we do not have omega, Lvalue, sha.
        #     i.e. [lb,ar,ub] = [r,r,r]
        #
        # "conditional"
        #     lb=ar<ub: we always have reg but in some cases over sextic fields we do not have omega, Lvalue, sha.
        #     e.g. [lb,ar,ub] = [0,0,2], [1,1,3]
        #
        # "missing_gens"
        #     lb<ar<=ub
        #     e.g. [lb,ar,ub] = [0,1,1], [0,2,2], [1,2,2], [0,1,3]
        #
        # "incomplete"
        #     ar not computed.  (We can always set lb=0, ub=Infinity.)

        # Rank and bounds
        try:
            self.rk = web_latex(self.rank)
        except AttributeError:
            self.rank = None
            self.rk = "not available"

        try:
            self.rk_lb, self.rk_ub = self.rank_bounds
        except AttributeError:
            self.rk_lb = 0
            self.rk_ub = Infinity
            self.rank_bounds = "not available"

        # Analytic rank
        try:
            self.ar = web_latex(self.analytic_rank)
        except AttributeError:
            self.analytic_rank = None
            self.ar = "not available"

        # for debugging:
        assert self.rk == "not available" or (self.rk_lb == self.rank
                                              and self.rank == self.rk_ub)
        assert self.ar == "not available" or (self.rk_lb <= self.analytic_rank
                                              and
                                              self.analytic_rank <= self.rk_ub)

        self.bsd_status = "incomplete"
        if self.analytic_rank != None:
            if self.rk_lb == self.rk_ub:
                self.bsd_status = "unconditional"
            elif self.rk_lb == self.analytic_rank:
                self.bsd_status = "conditional"
            else:
                self.bsd_status = "missing_gens"

        # Regulator only in conditional/unconditional cases, or when we know the rank:
        if self.bsd_status in ["conditional", "unconditional"]:
            if self.ar == 0:
                self.reg = web_latex(1)  # otherwise we only get 1.00000...
            else:
                try:
                    self.reg = web_latex(self.reg)
                except AttributeError:
                    self.reg = "not available"
        elif self.rk != "not available":
            self.reg = web_latex(self.reg) if self.rank else web_latex(1)
        else:
            self.reg = "not available"

        # Generators
        try:
            self.gens = [web_point(parse_point(K, P)) for P in self.gens]
        except AttributeError:
            self.gens = []

        # Global period
        try:
            self.omega = web_latex(self.omega)
        except AttributeError:
            self.omega = "not available"

        # L-value
        try:
            r = int(self.analytic_rank)
            # lhs = "L(E,1) = " if r==0 else "L'(E,1) = " if r==1 else "L^{{({})}}(E,1)/{}! = ".format(r,r)
            self.Lvalue = "\\(" + str(self.Lvalue) + "\\)"
        except (TypeError, AttributeError):
            self.Lvalue = "not available"

        # Tamagawa product
        tamagawa_numbers = [ZZ(_ld['cp']) for _ld in self.local_data]
        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [
            latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')'
            for cp in cp_fac
        ]
        if len(cp_fac) > 1:
            self.tamagawa_factors = r'\cdot'.join(cp_fac)
        else:
            self.tamagawa_factors = None
        self.tamagawa_product = web_latex(prod(tamagawa_numbers, 1))

        # Analytic Sha
        try:
            self.sha = web_latex(self.sha) + " (rounded)"
        except AttributeError:
            self.sha = "not available"

        # Local data

        # Fix for Kodaira symbols, which in the database start and end
        # with \( and \) and may have multiple backslashes.  Note that
        # to put a single backslash into a python string you have to
        # use '\\' which will display as '\\' but only counts as one
        # character in the string.  which are added in the template.
        def tidy_kod(kod):
            while '\\\\' in kod:
                kod = kod.replace('\\\\', '\\')
            kod = kod.replace('\\(', '').replace('\\)', '')
            return kod

        for P, ld in zip(badprimes, local_data):
            ld['p'] = web_latex(P)
            ld['norm'] = P.norm()
            ld['kod'] = tidy_kod(ld['kod'])

        # URLs of self and related objects:
        self.urls = {}
        # It's useful to be able to use this class out of context, when calling url_for will fail:
        try:
            self.urls['curve'] = url_for(".show_ecnf",
                                         nf=self.field_label,
                                         conductor_label=quote(
                                             self.conductor_label),
                                         class_label=self.iso_label,
                                         number=self.number)
        except RuntimeError:
            return
        self.urls['class'] = url_for(".show_ecnf_isoclass",
                                     nf=self.field_label,
                                     conductor_label=quote(
                                         self.conductor_label),
                                     class_label=self.iso_label)
        self.urls['conductor'] = url_for(".show_ecnf_conductor",
                                         nf=self.field_label,
                                         conductor_label=quote(
                                             self.conductor_label))
        self.urls['field'] = url_for(".show_ecnf1", nf=self.field_label)

        # Isogeny information

        self.one_deg = ZZ(self.class_deg).is_prime()
        isodegs = [str(d) for d in self.isodeg if d > 1]
        if len(isodegs) < 3:
            self.isodeg = " and ".join(isodegs)
        else:
            self.isodeg = " and ".join([", ".join(isodegs[:-1]), isodegs[-1]])

        sig = self.signature
        totally_real = sig[1] == 0
        imag_quadratic = sig == [0, 1]

        if totally_real:
            self.hmf_label = "-".join(
                [self.field.label, self.conductor_label, self.iso_label])
            self.urls['hmf'] = url_for('hmf.render_hmf_webpage',
                                       field_label=self.field.label,
                                       label=self.hmf_label)
            lfun_url = url_for("l_functions.l_function_ecnf_page",
                               field_label=self.field_label,
                               conductor_label=self.conductor_label,
                               isogeny_class_label=self.iso_label)
            origin_url = lfun_url.lstrip('/L/').rstrip('/')
            if sig[0] <= 2 and db.lfunc_instances.exists({'url': origin_url}):
                self.urls['Lfunction'] = lfun_url
            elif self.abs_disc**2 * self.conductor_norm < 70000:
                # we shouldn't trust the Lfun computed on the fly for large conductor
                self.urls['Lfunction'] = url_for(
                    "l_functions.l_function_hmf_page",
                    field=self.field_label,
                    label=self.hmf_label,
                    character='0',
                    number='0')

        if imag_quadratic:
            self.bmf_label = "-".join(
                [self.field.label, self.conductor_label, self.iso_label])
            self.bmf_url = url_for('bmf.render_bmf_webpage',
                                   field_label=self.field_label,
                                   level_label=self.conductor_label,
                                   label_suffix=self.iso_label)
            lfun_url = url_for("l_functions.l_function_ecnf_page",
                               field_label=self.field_label,
                               conductor_label=self.conductor_label,
                               isogeny_class_label=self.iso_label)
            origin_url = lfun_url.lstrip('/L/').rstrip('/')
            if db.lfunc_instances.exists({'url': origin_url}):
                self.urls['Lfunction'] = lfun_url

        # most of this code is repeated in isog_class.py
        # and should be refactored
        self.friends = []
        self.friends += [('Isogeny class ' + self.short_class_label,
                          self.urls['class'])]
        self.friends += [('Twists',
                          url_for('ecnf.index',
                                  field=self.field_label,
                                  jinv=rename_j(j)))]
        if totally_real and not 'Lfunction' in self.urls:
            self.friends += [('Hilbert modular form ' + self.hmf_label,
                              self.urls['hmf'])]

        if imag_quadratic:
            if "CM" in self.label:
                self.friends += [('Bianchi modular form is not cuspidal', '')]
            elif not 'Lfunction' in self.urls:
                if db.bmf_forms.label_exists(self.bmf_label):
                    self.friends += [
                        ('Bianchi modular form %s' % self.bmf_label,
                         self.bmf_url)
                    ]
                else:
                    self.friends += [
                        ('(Bianchi modular form %s)' % self.bmf_label, '')
                    ]

        self.properties = [('Label', self.label)]

        # Plot
        if K.signature()[0]:
            self.plot = encode_plot(
                EC_nf_plot(K, self.ainvs, self.field.generator_name()))
            self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format(
                self.plot)
            self.properties += [(None, self.plot_link)]
        self.properties += [('Base field', self.field.field_pretty())]

        self.properties += [
            ('Conductor', self.cond),
            ('Conductor norm', self.cond_norm),
            # See issue #796 for why this is hidden (can be very large)
            # ('j-invariant', self.j),
            ('CM', self.cm_bool)
        ]

        if self.base_change:
            self.properties += [
                ('Base change',
                 'yes: %s' % ','.join([str(lab) for lab in self.base_change]))
            ]
        else:
            self.base_change = []  # in case it was False instead of []
            self.properties += [('Base change', 'no')]
        self.properties += [('Q-curve', self.qc)]

        r = self.rk
        if r == "?":
            r = self.rk_bnds
        self.properties += [
            ('Torsion order', self.ntors),
            ('Rank', r),
        ]

        for E0 in self.base_change:
            self.friends += [(r'Base change of %s /\(\Q\)' % E0,
                              url_for("ec.by_ec_label", label=E0))]

        self._code = None  # will be set if needed by get_code()

        self.downloads = [('All stored data to text',
                           url_for(".download_ECNF_all",
                                   nf=self.field_label,
                                   conductor_label=quote(self.conductor_label),
                                   class_label=self.iso_label,
                                   number=self.number))]
        for lang in [["Magma", "magma"], ["SageMath", "sage"], ["GP", "gp"]]:
            self.downloads.append(
                ('Code to {}'.format(lang[0]),
                 url_for(".ecnf_code_download",
                         nf=self.field_label,
                         conductor_label=quote(self.conductor_label),
                         class_label=self.iso_label,
                         number=self.number,
                         download_type=lang[1])))

        if 'Lfunction' in self.urls:
            Lfun = get_lfunction_by_url(
                self.urls['Lfunction'].lstrip('/L').rstrip('/'),
                projection=['degree', 'trace_hash', 'Lhash'])
            if Lfun is None:
                self.friends += [('L-function not available', "")]
            else:
                instances = get_instances_by_Lhash_and_trace_hash(
                    Lfun['Lhash'], Lfun['degree'], Lfun.get('trace_hash'))
                exclude = {
                    elt[1].rstrip('/').lstrip('/')
                    for elt in self.friends if elt[1]
                }
                self.friends += names_and_urls(instances, exclude=exclude)
                self.friends += [('L-function', self.urls['Lfunction'])]
        else:
            self.friends += [('L-function not available', "")]
Example #8
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these.

        # Old version: required constructing the actual elliptic curve
        # E, and computing some further data about it.

        # New version (May 2016): extra data fields now in the
        # database so we do not have to construct the curve or do any
        # computation with it on the fly.  As a failsafe the old way
        # is still included.

        data = self.data = {}
        try:
            data['ainvs'] = [int(c) for c in self.xainvs[1:-1].split(',')]
        except AttributeError:
            data['ainvs'] = [int(ai) for ai in self.ainvs]
        data['conductor'] = N = ZZ(self.conductor)
        data['j_invariant'] = QQ(str(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:  # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        mw = self.mw = {}
        mw['rank'] = self.rank
        mw['int_points'] = ''
        if self.xintcoords:
            a1, a2, a3, a4, a6 = [ZZ(a) for a in data['ainvs']]

            def lift_x(x):
                f = ((x + a2) * x + a4) * x + a6
                b = (a1 * x + a3)
                d = (b * b + 4 * f).sqrt()
                return (x, (-b + d) / 2)

            mw['int_points'] = ', '.join(
                web_latex(lift_x(x)) for x in self.xintcoords)

        mw['generators'] = ''
        mw['heights'] = []
        if self.gens:
            mw['generators'] = [
                web_latex(tuple(P)) for P in parse_points(self.gens)
            ]

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(
                ['\Z/{%s}\Z' % n for n in tor_struct])
            mw['tor_gens'] = ', '.join(
                web_latex(tuple(P))
                for P in parse_points(self.torsion_generators))

        # try to get all the data we need from the database entry (now in self)
        try:
            data['equation'] = self.equation
            local_data = self.local_data
            D = self.signD * prod(
                [ld['p']**ld['ord_disc'] for ld in local_data])
            data['disc'] = D
            Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond'])
                                  for ld in local_data])
            Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc'])
                                  for ld in local_data],
                                 unit=ZZ(self.signD))

            data['minq_D'] = minqD = self.min_quad_twist['disc']
            minq_label = self.min_quad_twist['label']
            data['minq_label'] = db_ec().find_one(
                {'label': minq_label}, ['lmfdb_label'])['lmfdb_label']
            data['minq_info'] = '(itself)' if minqD == 1 else '(by %s)' % minqD
            try:
                data['degree'] = self.degree
            except AttributeError:
                data['degree'] = 0  # invalid, but will be displayed nicely
            mw['heights'] = self.heights
            if self.number == 1:
                data['an'] = self.anlist
                data['ap'] = self.aplist
            else:
                r = db_ec().find_one({
                    'lmfdb_iso': self.lmfdb_iso,
                    'number': 1
                }, ['anlist', 'aplist'])
                data['an'] = r['anlist']
                data['ap'] = r['aplist']

        # otherwise fall back to computing it from the curve
        except AttributeError:
            print("Falling back to constructing E")
            self.E = EllipticCurve(data['ainvs'])
            data['equation'] = web_latex(self.E)
            data['disc'] = D = self.E.discriminant()
            Nfac = N.factor()
            Dfac = D.factor()
            bad_primes = [p for p, e in Nfac]
            try:
                data['degree'] = self.degree
            except AttributeError:
                try:
                    data['degree'] = self.E.modular_degree()
                except RuntimeError:
                    data['degree'] = 0  # invalid, but will be displayed nicely
            minq, minqD = self.E.minimal_quadratic_twist()
            data['minq_D'] = minqD
            if minqD == 1:
                data['minq_label'] = self.lmfdb_label
                data['minq_info'] = '(itself)'
            else:
                # This relies on the minimal twist being in the
                # database, which is true when the database only
                # contains the Cremona database.  It would be a good
                # idea if, when the database is extended, we ensured
                # that for any curve included, all twists of smaller
                # conductor are also included.
                minq_ainvs = [str(c) for c in minq.ainvs()]
                data['minq_label'] = db_ec().find_one(
                    {
                        'jinv': str(self.E.j_invariant()),
                        'ainvs': minq_ainvs
                    }, ['lmfdb_label'])['lmfdb_label']
                data['minq_info'] = '(by %s)' % minqD

            if self.gens:
                self.generators = [self.E(g) for g in parse_points(self.gens)]
                mw['heights'] = [P.height() for P in self.generators]

            data['an'] = self.E.anlist(20, python_ints=True)
            data['ap'] = self.E.aplist(100, python_ints=True)
            self.local_data = local_data = []
            for p in bad_primes:
                ld = self.E.local_data(p, algorithm="generic")
                local_data_p = {}
                local_data_p['p'] = p
                local_data_p['cp'] = ld.tamagawa_number()
                local_data_p['kod'] = web_latex(ld.kodaira_symbol()).replace(
                    '$', '')
                local_data_p['red'] = ld.bad_reduction_type()
                rootno = -ld.bad_reduction_type()
                if rootno == 0:
                    rootno = self.E.root_number(p)
                local_data_p['rootno'] = rootno
                local_data_p['ord_cond'] = ld.conductor_valuation()
                local_data_p['ord_disc'] = ld.discriminant_valuation()
                local_data_p['ord_den_j'] = max(
                    0, -self.E.j_invariant().valuation(p))
                local_data.append(local_data_p)

        # If we got the data from the database, the root numbers may
        # not have been stored there, so we have to compute them.  If
        # there are additive primes this means constructing the curve.
        for ld in self.local_data:
            if not 'rootno' in ld:
                rootno = -ld['red']
                if rootno == 0:
                    try:
                        E = self.E
                    except AttributeError:
                        self.E = E = EllipticCurve(data['ainvs'])
                    rootno = E.root_number(ld['p'])
                ld['rootno'] = rootno

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        data['disc_factor'] = latex(Dfac)
        data['cond_factor'] = latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD'] % 4 == 0:
                d4 = ZZ(data['CMD']) // 4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = st_link_by_name(1, 2, 'N(U(1))')
        else:
            data['ST'] = st_link_by_name(1, 2, 'SU(2)')

        data['p_adic_primes'] = [
            p for i, p in enumerate(prime_range(5, 100))
            if (N * data['ap'][i]) % p != 0
        ]

        try:
            data['galois_images'] = [
                trim_galois_image_code(s) for s in self.galois_images
            ]
            data['non_surjective_primes'] = self.non_surjective_primes
        except AttributeError:
            #print "No Galois image data"
            data['galois_images'] = []
            data['non_surjective_primes'] = []

        data['galois_data'] = [{
            'p': p,
            'image': im
        } for p, im in zip(data['non_surjective_primes'],
                           data['galois_images'])]

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.ncurves = db_ec().count({'lmfdb_iso': self.lmfdb_iso})
        isodegs = [str(d) for d in self.isogeny_degrees if d > 1]
        if len(isodegs) < 3:
            data['isogeny_degrees'] = " and ".join(isodegs)
        else:
            data['isogeny_degrees'] = " and ".join(
                [", ".join(isodegs[:-1]), isodegs[-1]])

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join(
                [latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data[
                'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"

        # Leading term of L-function & BSD data
        bsd = self.bsd = {}
        r = self.rank
        if r >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r, r)
        elif r:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1 + self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)

        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({
                'lmfdb_iso':
                self.lmfdb_iso
            }).count()) > 0

        tamagawa_numbers = [ZZ(ld['cp']) for ld in local_data]
        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [
            latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')'
            for cp in cp_fac
        ]
        bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac)
        bsd['tamagawa_product'] = prod(tamagawa_numbers)

        data['newform'] = web_latex(
            PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform_label'] = self.newform_label = newform_label(
            cond, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms",
                                    level=cond,
                                    weight=2,
                                    character=1,
                                    label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.friends = [('Isogeny class ' + self.lmfdb_iso, self.class_url),
                        ('Minimal quadratic twist %s %s' %
                         (data['minq_info'], data['minq_label']),
                         url_for(".by_triple_label",
                                 conductor=minq_N,
                                 iso_label=minq_iso,
                                 number=minq_number)),
                        ('All twists ',
                         url_for(".rational_elliptic_curves", jinv=self.jinv)),
                        ('L-function',
                         url_for("l_functions.l_function_ec_page",
                                 label=self.lmfdb_label))]
        if not self.cm:
            if N <= 300:
                self.friends += [('Symmetric square L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='2',
                                          label=self.lmfdb_iso))]
            if N <= 50:
                self.friends += [('Symmetric cube L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='3',
                                          label=self.lmfdb_iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label,
                              self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_label,
                                   limit=1000)),
                          ('Download all stored data',
                           url_for(".download_EC_all",
                                   label=self.lmfdb_label)),
                          ('Download Magma code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='magma')),
                          ('Download Sage code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='sage')),
                          ('Download GP code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='gp'))]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())

        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [('Label', self.lmfdb_label), (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (
            self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso,
                       url_for(".by_double_iso_label",
                               conductor=N,
                               iso_label=iso)), ('%s' % num, ' ')]
Example #9
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these.

        # Old version: required constructing the actual elliptic curve
        # E, and computing some further data about it.

        # New version (May 2016): extra data fields now in the
        # database so we do not have to construct the curve or do any
        # computation with it on the fly.  As a failsafe the old way
        # is still included.

        data = self.data = {}
        data['ainvs'] = self.ainvs
        data['conductor'] = N = ZZ(self.conductor)
        data['j_invariant'] = QQ(str(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:  # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])

        # extract data about MW rank, generators, heights and torsion:
        self.make_mw()

        # get more data from the database entry

        data['equation'] = self.equation
        local_data = self.local_data
        D = self.signD * prod([ld['p']**ld['ord_disc'] for ld in local_data])
        data['disc'] = D
        Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond'])
                              for ld in local_data])
        Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc'])
                              for ld in local_data],
                             unit=ZZ(self.signD))

        data['minq_D'] = minqD = self.min_quad_twist['disc']
        minq_label = self.min_quad_twist['label']
        data['minq_label'] = db.ec_curves.lucky({'label': minq_label},
                                                'lmfdb_label')
        data['minq_info'] = '(itself)' if minqD == 1 else '(by %s)' % minqD
        if self.degree is None:
            data['degree'] = 0  # invalid, but will be displayed nicely
        else:
            data['degree'] = self.degree
        if self.number == 1:
            data['an'] = self.anlist
            data['ap'] = self.aplist
        else:
            r = db.ec_curves.lucky({'lmfdb_iso': self.lmfdb_iso, 'number': 1})
            data['an'] = r['anlist']
            data['ap'] = r['aplist']

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        data['disc_factor'] = latex(Dfac)
        data['cond_factor'] = latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        data['galois_images'] = [
            trim_galois_image_code(s) for s in self.mod_p_images
        ]
        data['non_maximal_primes'] = self.non_maximal_primes
        data['galois_data'] = [{
            'p': p,
            'image': im
        } for p, im in zip(data['non_maximal_primes'], data['galois_images'])]

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['cm_ramp'] = [
                p for p in ZZ(self.cm).support()
                if not p in self.non_maximal_primes
            ]
            data['cm_nramp'] = len(data['cm_ramp'])
            if data['cm_nramp'] == 1:
                data['cm_ramp'] = data['cm_ramp'][0]
            else:
                data['cm_ramp'] = ", ".join([str(p) for p in data['cm_ramp']])
            data['cm_sqf'] = ZZ(self.cm).squarefree_part()

            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD'] % 4 == 0:
                d4 = ZZ(data['CMD']) // 4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = st_link_by_name(1, 2, 'N(U(1))')
        else:
            data['ST'] = st_link_by_name(1, 2, 'SU(2)')

        data['p_adic_primes'] = [
            p for i, p in enumerate(prime_range(5, 100))
            if (N * data['ap'][i]) % p != 0
        ]

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.one_deg = ZZ(self.class_deg).is_prime()
        self.ncurves = db.ec_curves.count({'lmfdb_iso': self.lmfdb_iso})
        isodegs = [str(d) for d in self.isogeny_degrees if d > 1]
        if len(isodegs) < 3:
            data['isogeny_degrees'] = " and ".join(isodegs)
        else:
            data['isogeny_degrees'] = " and ".join(
                [", ".join(isodegs[:-1]), isodegs[-1]])

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join(
                [latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data[
                'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"

        # Leading term of L-function & other BSD data
        self.make_bsd()

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)

        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = db.ec_padic.exists(
                {'lmfdb_iso': self.lmfdb_iso})

        # Iwasawa data (where present)

        self.make_iwasawa()

        # Torsion growth data (where present)

        self.make_torsion_growth()

        data['newform'] = web_latex(
            PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform_label'] = self.newform_label = newform_label(
            cond, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms",
                                    level=cond,
                                    weight=2,
                                    character=1,
                                    label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.friends = [('Isogeny class ' + self.lmfdb_iso, self.class_url),
                        ('Minimal quadratic twist %s %s' %
                         (data['minq_info'], data['minq_label']),
                         url_for(".by_triple_label",
                                 conductor=minq_N,
                                 iso_label=minq_iso,
                                 number=minq_number)),
                        ('All twists ',
                         url_for(".rational_elliptic_curves", jinv=self.jinv)),
                        ('L-function',
                         url_for("l_functions.l_function_ec_page",
                                 conductor_label=N,
                                 isogeny_class_label=iso))]

        if not self.cm:
            if N <= 300:
                self.friends += [('Symmetric square L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='2',
                                          conductor=N,
                                          isogeny=iso))]
            if N <= 50:
                self.friends += [('Symmetric cube L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='3',
                                          conductor=N,
                                          isogeny=iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label,
                              self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_label,
                                   limit=1000)),
                          ('Download all stored data',
                           url_for(".download_EC_all",
                                   label=self.lmfdb_label)),
                          ('Download Magma code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='magma')),
                          ('Download SageMath code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='sage')),
                          ('Download GP code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='gp'))]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())

        self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format(
            self.plot)
        self.properties = [('Label', self.lmfdb_label), (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % self.mw['rank']),
                           ('Torsion Structure',
                            '\(%s\)' % self.mw['tor_struct'])]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (
            self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso,
                       url_for(".by_double_iso_label",
                               conductor=N,
                               iso_label=iso)), ('%s' % num, ' ')]
Example #10
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these.

        # Old version: required constructing the actual elliptic curve
        # E, and computing some further data about it.

        # New version (May 2016): extra data fields now in the
        # database so we do not have to construct the curve or do any
        # computation with it on the fly.  As a failsafe the old way
        # is still included.

        data = self.data = {}
        try:
            data['ainvs'] = [int(c) for c in self.xainvs[1:-1].split(',')]
        except AttributeError:
            data['ainvs'] = [int(ai) for ai in self.ainvs]
        data['conductor'] = N = ZZ(self.conductor)
        data['j_invariant'] = QQ(str(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:  # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        mw = self.mw = {}
        mw['rank'] = self.rank
        mw['int_points'] = ''
        if self.xintcoords:
            a1, a2, a3, a4, a6 = [ZZ(a) for a in data['ainvs']]

            def lift_x(x):
                f = ((x + a2) * x + a4) * x + a6
                b = (a1 * x + a3)
                d = (b * b + 4 * f).sqrt()
                return (x, (-b + d) / 2)

            mw['int_points'] = ', '.join(
                web_latex(lift_x(x)) for x in self.xintcoords)

        mw['generators'] = ''
        mw['heights'] = []
        if self.gens:
            mw['generators'] = [
                web_latex(tuple(P)) for P in parse_points(self.gens)
            ]

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(
                ['\Z/{%s}\Z' % n for n in tor_struct])
            mw['tor_gens'] = ', '.join(
                web_latex(tuple(P))
                for P in parse_points(self.torsion_generators))

        # try to get all the data we need from the database entry (now in self)
        try:
            data['equation'] = self.equation
            local_data = self.local_data
            D = self.signD * prod(
                [ld['p']**ld['ord_disc'] for ld in local_data])
            data['disc'] = D
            Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond'])
                                  for ld in local_data])
            Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc'])
                                  for ld in local_data],
                                 unit=ZZ(self.signD))

            data['minq_D'] = minqD = self.min_quad_twist['disc']
            minq_label = self.min_quad_twist['label']
            data['minq_label'] = db_ec().find_one(
                {'label': minq_label}, ['lmfdb_label'])['lmfdb_label']
            data['minq_info'] = '(itself)' if minqD == 1 else '(by %s)' % minqD
            try:
                data['degree'] = self.degree
            except AttributeError:
                data['degree'] = 0  # invalid, but will be displayed nicely
            mw['heights'] = self.heights
            if self.number == 1:
                data['an'] = self.anlist
                data['ap'] = self.aplist
            else:
                r = db_ec().find_one({
                    'lmfdb_iso': self.lmfdb_iso,
                    'number': 1
                }, ['anlist', 'aplist'])
                data['an'] = r['anlist']
                data['ap'] = r['aplist']

        # otherwise fall back to computing it from the curve
        except AttributeError:
            self.E = EllipticCurve(data['ainvs'])
            data['equation'] = web_latex(self.E)
            data['disc'] = D = self.E.discriminant()
            Nfac = N.factor()
            Dfac = D.factor()
            bad_primes = [p for p, e in Nfac]
            try:
                data['degree'] = self.degree
            except AttributeError:
                try:
                    data['degree'] = self.E.modular_degree()
                except RuntimeError:
                    data['degree'] = 0  # invalid, but will be displayed nicely
            minq, minqD = self.E.minimal_quadratic_twist()
            data['minq_D'] = minqD
            if minqD == 1:
                data['minq_label'] = self.lmfdb_label
                data['minq_info'] = '(itself)'
            else:
                # This relies on the minimal twist being in the
                # database, which is true when the database only
                # contains the Cremona database.  It would be a good
                # idea if, when the database is extended, we ensured
                # that for any curve included, all twists of smaller
                # conductor are also included.
                minq_ainvs = [str(c) for c in minq.ainvs()]
                data['minq_label'] = db_ec().find_one(
                    {
                        'jinv': str(self.E.j_invariant()),
                        'ainvs': minq_ainvs
                    }, ['lmfdb_label'])['lmfdb_label']
                data['minq_info'] = '(by %s)' % minqD

            if self.gens:
                self.generators = [self.E(g) for g in parse_points(self.gens)]
                mw['heights'] = [P.height() for P in self.generators]

            data['an'] = self.E.anlist(20, python_ints=True)
            data['ap'] = self.E.aplist(100, python_ints=True)
            self.local_data = local_data = []
            for p in bad_primes:
                ld = self.E.local_data(p, algorithm="generic")
                local_data_p = {}
                local_data_p['p'] = p
                local_data_p['cp'] = ld.tamagawa_number()
                local_data_p['kod'] = web_latex(ld.kodaira_symbol()).replace(
                    '$', '')
                local_data_p['red'] = ld.bad_reduction_type()
                rootno = -ld.bad_reduction_type()
                if rootno == 0:
                    rootno = self.E.root_number(p)
                local_data_p['rootno'] = rootno
                local_data_p['ord_cond'] = ld.conductor_valuation()
                local_data_p['ord_disc'] = ld.discriminant_valuation()
                local_data_p['ord_den_j'] = max(
                    0, -self.E.j_invariant().valuation(p))
                local_data.append(local_data_p)

        # If we got the data from the database, the root numbers may
        # not have been stored there, so we have to compute them.  If
        # there are additive primes this means constructing the curve.
        for ld in self.local_data:
            if not 'rootno' in ld:
                rootno = -ld['red']
                if rootno == 0:
                    try:
                        E = self.E
                    except AttributeError:
                        self.E = E = EllipticCurve(data['ainvs'])
                    rootno = E.root_number(ld['p'])
                ld['rootno'] = rootno

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        data['disc_factor'] = latex(Dfac)
        data['cond_factor'] = latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        data['galois_images'] = [
            trim_galois_image_code(s) for s in self.mod_p_images
        ]
        data['non_maximal_primes'] = self.non_maximal_primes
        data['galois_data'] = [{
            'p': p,
            'image': im
        } for p, im in zip(data['non_maximal_primes'], data['galois_images'])]

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['cm_ramp'] = [
                p for p in ZZ(self.cm).support()
                if not p in self.non_surjective_primes
            ]
            data['cm_nramp'] = len(data['cm_ramp'])
            if data['cm_nramp'] == 1:
                data['cm_ramp'] = data['cm_ramp'][0]
            else:
                data['cm_ramp'] = ", ".join([str(p) for p in data['cm_ramp']])
            data['cm_sqf'] = ZZ(self.cm).squarefree_part()

            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD'] % 4 == 0:
                d4 = ZZ(data['CMD']) // 4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = st_link_by_name(1, 2, 'N(U(1))')
        else:
            data['ST'] = st_link_by_name(1, 2, 'SU(2)')

        data['p_adic_primes'] = [
            p for i, p in enumerate(prime_range(5, 100))
            if (N * data['ap'][i]) % p != 0
        ]

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.one_deg = ZZ(self.class_deg).is_prime()
        self.ncurves = db_ec().count({'lmfdb_iso': self.lmfdb_iso})
        isodegs = [str(d) for d in self.isogeny_degrees if d > 1]
        if len(isodegs) < 3:
            data['isogeny_degrees'] = " and ".join(isodegs)
        else:
            data['isogeny_degrees'] = " and ".join(
                [", ".join(isodegs[:-1]), isodegs[-1]])

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join(
                [latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data[
                'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"

        # Leading term of L-function & BSD data
        bsd = self.bsd = {}
        r = self.rank
        if r >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r, r)
        elif r:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1 + self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)

        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({
                'lmfdb_iso':
                self.lmfdb_iso
            }).count()) > 0

        data['iwdata'] = []
        try:
            pp = [int(p) for p in self.iwdata]
            badp = [l['p'] for l in self.local_data]
            rtypes = [l['red'] for l in self.local_data]
            data[
                'iw_missing_flag'] = False  # flags that there is at least one "?" in the table
            data[
                'additive_shown'] = False  # flags that there is at least one additive prime in table
            for p in sorted(pp):
                rtype = ""
                if p in badp:
                    red = rtypes[badp.index(p)]
                    # Additive primes are excluded from the table
                    # if red==0:
                    #    continue
                    #rtype = ["nsmult","add", "smult"][1+red]
                    rtype = ["nonsplit", "add", "split"][1 + red]
                p = str(p)
                pdata = self.iwdata[p]
                if isinstance(pdata, type(u'?')):
                    if not rtype:
                        rtype = "ordinary" if pdata == "o?" else "ss"
                    if rtype == "add":
                        data['iwdata'] += [[p, rtype, "-", "-"]]
                        data['additive_shown'] = True
                    else:
                        data['iwdata'] += [[p, rtype, "?", "?"]]
                        data['iw_missing_flag'] = True
                else:
                    if len(pdata) == 2:
                        if not rtype:
                            rtype = "ordinary"
                        lambdas = str(pdata[0])
                        mus = str(pdata[1])
                    else:
                        rtype = "ss"
                        lambdas = ",".join([str(pdata[0]), str(pdata[1])])
                        mus = str(pdata[2])
                        mus = ",".join([mus, mus])
                    data['iwdata'] += [[p, rtype, lambdas, mus]]
        except AttributeError:
            # For curves with no Iwasawa data
            pass

        tamagawa_numbers = [ZZ(ld['cp']) for ld in local_data]
        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [
            latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')'
            for cp in cp_fac
        ]
        bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac)
        bsd['tamagawa_product'] = prod(tamagawa_numbers)

        # Torsion growth data

        data['torsion_growth_data_exists'] = False
        try:
            tg = self.tor_gro
            data['torsion_growth_data_exists'] = True
            data['tgx'] = tgextra = []
            # find all base-changes of this curve in the database, if any
            bcs = [
                res['label']
                for res in getDBConnection().elliptic_curves.nfcurves.find(
                    {'base_change': self.lmfdb_label},
                    projection={
                        'label': True,
                        '_id': False
                    })
            ]
            bcfs = [lab.split("-")[0] for lab in bcs]
            for F, T in tg.items():
                tg1 = {}
                tg1['bc'] = "Not in database"
                if ":" in F:
                    F = F.replace(":", ".")
                    field_data = nf_display_knowl(F, getDBConnection(),
                                                  field_pretty(F))
                    deg = int(F.split(".")[0])
                    bcc = [x for x, y in zip(bcs, bcfs) if y == F]
                    if bcc:
                        from lmfdb.ecnf.main import split_full_label
                        F, NN, I, C = split_full_label(bcc[0])
                        tg1['bc'] = bcc[0]
                        tg1['bc_url'] = url_for('ecnf.show_ecnf',
                                                nf=F,
                                                conductor_label=NN,
                                                class_label=I,
                                                number=C)
                else:
                    field_data = web_latex_split_on_pm(
                        coeff_to_poly(string2list(F)))
                    deg = F.count(",")
                tg1['d'] = deg
                tg1['f'] = field_data
                tg1['t'] = '\(' + ' \\times '.join(
                    ['\Z/{}\Z'.format(n) for n in T.split(",")]) + '\)'
                tg1['m'] = 0
                tgextra.append(tg1)

            tgextra.sort(key=lambda x: x['d'])
            data['ntgx'] = len(tgextra)
            lastd = 1
            for tg in tgextra:
                d = tg['d']
                if d != lastd:
                    tg['m'] = len([x for x in tgextra if x['d'] == d])
                    lastd = d
            data['tg_maxd'] = max(db_ecstats().find_one(
                {'_id': 'torsion_growth'})['degrees'])

        except AttributeError:
            pass  # we have no torsion growth data

        data['newform'] = web_latex(
            PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform_label'] = self.newform_label = newform_label(
            cond, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms",
                                    level=cond,
                                    weight=2,
                                    character=1,
                                    label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.friends = [('Isogeny class ' + self.lmfdb_iso, self.class_url),
                        ('Minimal quadratic twist %s %s' %
                         (data['minq_info'], data['minq_label']),
                         url_for(".by_triple_label",
                                 conductor=minq_N,
                                 iso_label=minq_iso,
                                 number=minq_number)),
                        ('All twists ',
                         url_for(".rational_elliptic_curves", jinv=self.jinv)),
                        ('L-function',
                         url_for("l_functions.l_function_ec_page",
                                 conductor_label=N,
                                 isogeny_class_label=iso))]
        if not self.cm:
            if N <= 300:
                self.friends += [('Symmetric square L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='2',
                                          conductor=N,
                                          isogeny=iso))]
            if N <= 50:
                self.friends += [('Symmetric cube L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='3',
                                          conductor=N,
                                          isogeny=iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label,
                              self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_label,
                                   limit=1000)),
                          ('Download all stored data',
                           url_for(".download_EC_all",
                                   label=self.lmfdb_label)),
                          ('Download Magma code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='magma')),
                          ('Download Sage code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='sage')),
                          ('Download GP code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='gp'))]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())

        self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format(
            self.plot)
        self.properties = [('Label', self.lmfdb_label), (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (
            self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso,
                       url_for(".by_double_iso_label",
                               conductor=N,
                               iso_label=iso)), ('%s' % num, ' ')]