Example #1
0
    def cardinality(self):
        """
        Return the number of Lyndon words with the evaluation e.

        EXAMPLES::

            sage: LyndonWords([]).cardinality()
            0
            sage: LyndonWords([2,2]).cardinality()
            1
            sage: LyndonWords([2,3,2]).cardinality()
            30

        Check to make sure that the count matches up with the number of
        Lyndon words generated::

            sage: comps = [[],[2,2],[3,2,7],[4,2]] + Compositions(4).list()
            sage: lws = [LyndonWords(comp) for comp in comps]
            sage: all(lw.cardinality() == len(lw.list()) for lw in lws)
            True
        """
        evaluation = self._e
        le = list(evaluation)
        if not evaluation:
            return Integer(0)
        n = sum(evaluation)
        return sum(
            moebius(j) * multinomial([ni // j for ni in evaluation])
            for j in divisors(gcd(le))) // n
Example #2
0
    def cardinality(self):
        r"""
        Return the cardinality of ``self``.

        The number of ordered set partitions of a set of length `k` with
        composition shape `\mu` is equal to

        .. MATH::

            \frac{k!}{\prod_{\mu_i \neq 0} \mu_i!}.

        EXAMPLES::

            sage: OrderedSetPartitions(5,[2,3]).cardinality()
            10
            sage: OrderedSetPartitions(0, []).cardinality()
            1
            sage: OrderedSetPartitions(0, [0]).cardinality()
            1
            sage: OrderedSetPartitions(0, [0,0]).cardinality()
            1
            sage: OrderedSetPartitions(5, [2,0,3]).cardinality()
            10
        """
        return multinomial(self.c)