Example #1
0
def get_magma_qexpansions(filename, i1, prec, base_ring, magma=None):
    if magma is None:
        from sage.interfaces.magma import Magma
        magma = Magma()
    magma.set('prec',prec)
    magma.load("get_qexpansions.m")
    if i1 is None:
        for line in filename:
            print line
            magma.eval(line)
        magma.eval("f := g") # In case text is reversed
        f = 'f'
        eps_data_f = 'eps_on_gens'
    else:
        magma.load(filename)
        f = 'eigenforms_list[%s][1]'%i1
        eps_data_f = 'eigenforms_list[%s][2]'%i1
    qexpm = magma.extend_qexpansion(f, eps_data_f, prec)
    F0 = [0] * qexpm.Valuation().sage() + [o.sage() for o in qexpm.ElementToSequence()]
    K = F0[-1].parent()
    a = K.gen()
    phi = find_embeddings(K,base_ring)[0]
    F = [phi(o) for o in F0]
    eps_f = magma.get_character(f, eps_data_f).ValueList().sage()
    eps_f_full = magma.get_character_full(f, eps_data_f).ValueList().sage()
    N = len(eps_f)
    Geps = DirichletGroup(N, base_ring = K)

    eps_f = Geps([eps_f[i - 1] for i in Geps.unit_gens()])
    Geps_full = DirichletGroup(N)
    psi = eps_f_full[0].parent().embeddings(Geps_full.base_ring())[0]
    eps_f_full = Geps_full([psi(eps_f_full[i - 1]) for i in Geps_full.unit_gens()])

    if a == 1:
        sigma = lambda x:x
    else:
        try:
            sigma = next((s for s in K.automorphisms() if s(a)*a == 1))
        except StopIteration:
            raise NotImplementedError
    G = [phi(sigma(o)) for o in F0]
    eps_g = eps_f**-1
    eps_g_full = eps_f_full**-1
    F = ModFormqExp(F, base_ring, weight=1, level = N, character = eps_f, character_full = eps_f_full)
    G = ModFormqExp(G, base_ring, weight=1, level = N, character = eps_g, character_full = eps_g_full)
    return F, G
Example #2
0
def Lpvalue(f,g,h,p,prec,N = None,modformsring = False, weightbound = False, eps = None, orthogonal_form = None, data_idx=None, magma_args = None,force_computation=False, algorithm='threestage', derivative_order=1, lauders_advice = False, use_magma = True, magma = None, num_coeffs_qexpansion = 20000, max_primes=5, outfile = None):
    if magma_args is None:
        magma_args = {}
    if algorithm not in ['twostage','threestage']:
        raise ValueError('Algorithm should be one of "twostage" (default) or "threestage"')

    if magma is None:
        from sage.interfaces.magma import Magma
        magma = Magma(**magma_args)
    if hasattr(g,'j_invariant'):
        elliptic_curve = g
        g = g.modular_form()
    else:
        elliptic_curve = None
    data = None
    if h is None:
        if hasattr(f, 'modulus'):
            # Assume we need to create f and h from Dirichlet character
            kronecker_character = f
            f, _, h = define_qexpansions_from_dirichlet_character(p, prec, kronecker_character, num_coeffs_qexpansion, magma)
        else:
            kronecker_character = None
            # Assume that f contains a list of lines of text to initialize both f and h
            data = f
            f, h = get_magma_qexpansions(data, data_idx, max(prec,200), Qp(p,prec), magma=magma)
            eps = f.character_full()


    ll,mm = g.weight(),h.weight()
    t = 0 # Assume t = 0 here
    kk = ll + mm - 2 * (1 + t) # Is this correct?
    p = ZZ(p)
    if N is None:
        N = lcm([ZZ(f.level()),ZZ(g.level()),ZZ(h.level())])
        nu = N.valuation(p)
        N = N.prime_to_m_part(p)
    else:
        N = ZZ(N)
        nu = N.valuation(p)
    if outfile is None:
        outfile = "output_iterated_integral_%s_%s_%s_%s.txt"%(p,g.level(), h.level(), prec)
    print("Writing output to file %s"%outfile)
    fwrite("######### STARTING COMPUTATION OF Lp ###########", outfile)

    if elliptic_curve is not None:
        fwrite("E = EllipticCurve(%s)"%list(elliptic_curve.ainvs()), outfile)
        fwrite("  cond(E) = %s"%elliptic_curve.conductor(), outfile)
    if kronecker_character is not None:
        fwrite("kronecker_character = %s"%kronecker_character, outfile)
        fwrite("  conductor = %s"%kronecker_character.conductor(), outfile)
    if data is not None:
        fwrite("Data for weight-1 forms:", outfile)
        for line in data:
            fwrite(line, outfile)
    fwrite("Tame level N = %s, prime p = %s, nu = %s"%(N,p,nu), outfile)
    fwrite("precision = %s"%prec, outfile)
    fwrite("------ parameters --------------------", outfile)
    fwrite("modformsring = %s"%modformsring, outfile)
    fwrite("weightbound = %s"%weightbound, outfile)
    fwrite("eps = %s"%eps, outfile)
    fwrite("orthogonal_form = %s"%orthogonal_form, outfile)
    fwrite("magma_args = %s"%magma_args, outfile)
    fwrite("force_computation = %s"%force_computation, outfile)
    fwrite("algorithm = %s"%algorithm, outfile)
    fwrite("derivative_order = %s"%derivative_order, outfile)
    fwrite("lauders_advice = %s"%lauders_advice, outfile)
    fwrite("use_magma = %s"%use_magma, outfile)
    fwrite("num_coeffs_qexpansion = %s"%num_coeffs_qexpansion, outfile)
    fwrite("##########################################", outfile)
    prec = ZZ(prec)

    fwrite("Step 1: Compute the Up matrix", outfile)
    if algorithm == "twostage":
        computation_name = '%s_%s_%s_%s_%s_%s_%s'%(p,N,nu,kk,prec,'triv' if eps is None else 'char',algorithm)
    else:
        computation_name = '%s_%s_%s_%s_%s_%s'%(p,N,nu,kk,prec,'triv' if eps is None else 'char')
    if use_magma:
        tmp_filename = '/tmp/magma_mtx_%s.tmp'%computation_name
        import os.path
        from sage.misc.persist import db, db_save
        try:
            if force_computation:
                raise IOError
            V = db('Lpvalue_Apow_ordbasis_eimat_%s'%computation_name)
            ord_basis, eimat, zetapm, elldash, mdash = V[:5]
            Apow_data = V[5:]
        except IOError:
            if force_computation or not os.path.exists(tmp_filename):
                if eps is not None:
                    eps_magma = sage_character_to_magma(eps,N,magma=magma)
                    magma.load("overconvergent_alan.m")
                    # Am, zetapm, eimatm, elldash, mdash = magma.UpOperatorData(p, eps_magma, kk, prec,WeightBound=weightbound,nvals=5)
                    Am, zetapm, eimatm, elldash, mdash = magma.HigherLevelUpGj(p, kk, prec, weightbound, eps_magma,'"B"',nvals=5)
                else:
                    # Am, zetapm, eimatm, elldash, mdash = magma.UpOperatorData(p, N, kk, prec,WeightBound=weightbound,nvals=5)
                    magma.load("overconvergent_alan.m")
                    Am, zetapm, eimatm, elldash, mdash = magma.HigherLevelUpGj(p, kk, prec, weightbound, N,'"B"',nvals=5)
                fwrite(" ..Converting to Sage...", outfile)
                Amodulus = Am[1,1].Parent().Modulus().sage()
                Aprec = Amodulus.valuation(p)
                Arows = Am.NumberOfRows().sage()
                Acols = Am.NumberOfColumns().sage()
                Emodulus = eimatm[1,1].Parent().Modulus().sage()
                Eprec = Emodulus.valuation(p)
                Erows = eimatm.NumberOfRows().sage()
                Ecols = eimatm.NumberOfColumns().sage()
                magma.load("get_qexpansions.m")
                magma.eval('F := Open("%s", "w");'%tmp_filename)
                magma.eval('fprintf F, "%s, %s, %s, %s \\n"'%(p,Aprec,Arows,Acols)) # parameters
                magma.eval('save_matrix(%s, F)'%(Am.name()))
                # for i in range(1,Arows+1):
                #     magma.eval('fprintf F, "%%o\\n", %s[%s]'%(Am.name(),i))
                magma.eval('fprintf F, "%s, %s, %s, %s \\n"'%(p,Eprec,Erows,Ecols)) # parameters
                magma.eval('save_matrix(%s, F)'%(eimatm.name()))
                # for i in range(1,Erows+1):
                #     magma.eval('fprintf F, "%%o\\n", %s[%s]'%(eimatm.name(),i))
                magma.eval('fprintf F, "%s\\n"'%zetapm)
                magma.eval('fprintf F, "%s\\n"'%elldash)
                magma.eval('fprintf F, "%s\\n"'%mdash)
                magma.eval('delete F;')
                magma.quit()

            # Read A and eimat from file
            from sage.structure.sage_object import load
            from sage.misc.sage_eval import sage_eval
            with open(tmp_filename,'r') as fmagma:
                A = read_matrix_from_file(fmagma)
                eimat = read_matrix_from_file(fmagma)
                zetapm= sage_eval(fmagma.readline())
                elldash = sage_eval(fmagma.readline())
                mdash = sage_eval(fmagma.readline())

            fwrite("Step 3b: Apply Up^(r-1) to H", outfile)
            if algorithm == 'twostage':
                V0  = list(find_Apow_and_ord_two_stage(A, eimat, p, prec))
            else:
                V0 = list(find_Apow_and_ord_three_stage(A,eimat,p,prec))
            ord_basis = V0[0]
            Apow_data = V0[1:]
            V = [ord_basis]
            V.extend([eimat, zetapm, elldash, mdash])
            V.extend(Apow_data)
            db_save(V,'Lpvalue_Apow_ordbasis_eimat_%s'%computation_name)
            from posix import remove
            remove(tmp_filename)

    else:
        A, eimat, elldash, mdash = UpOperator(p,N,kk,prec, modformsring = False, weightbound = 6)

    fwrite("Step 2: p-depletion, Coleman primitive, and multiply", outfile)
    fwrite(".. Need %s coefficients of the q-expansion..."%(p**(nu+1) * elldash), outfile)
    if data is not None:
        f, h = get_magma_qexpansions(data, data_idx, (p**(nu+1) * elldash) + 200, Qp(p,prec), magma=magma)

    H = depletion_coleman_multiply(g, h, p, p**(nu+1) * elldash, t=0)

    fwrite("Step 3a: Compute ordinary projection", outfile)

    if len(Apow_data) == 1:
        Hord = compute_ordinary_projection_two_stage(H, Apow_data, eimat, elldash,p)
    else:
        Hord = compute_ordinary_projection_three_stage(H, [ord_basis] + Apow_data, eimat, elldash,p,nu)
    fwrite('Changing Hord to ring %s'%g[1].parent(), outfile)
    Hord = Hord.change_ring(h[1].parent())
    print [Hord[i] for i in range(30)]
    fwrite("Step 4: Project onto f-component", outfile)
    while True:
        try:
            ell, piHord, epstwist = project_onto_eigenspace(f, ord_basis, Hord, kk, N * p, p = p, derivative_order=derivative_order, max_primes=max_primes)
            break
        except RuntimeError:
            derivative_order += 1
            verbose("Increasing experimental derivative order to %s"%derivative_order)
        except ValueError:
            verbose("Experimental derivative order (%s) seems too high"%derivative_order)
            fwrite("Experimental derivative_order = %s"%derivative_order, outfile)
            fwrite("Seems too high...", outfile)
            fwrite("######################################", outfile)
            assert 0
    n = 1
    while f[n] == 0:
        n = next_prime(n)
    if lauders_advice == True or orthogonal_form is None:
        Lpa =  piHord[n] / (f[n] * epstwist(n))
        fwrite("Experimental derivative_order = %s"%derivative_order, outfile)
        fwrite("Checking Lauder's coincidence... (following should be a bunch of 'large' valuations)", outfile)
        fwrite(str([(i,(Lpa * f[i] * epstwist(i) - piHord[i]).valuation(p)) for i in prime_range(50)]), outfile)
        fwrite("Done", outfile)
    else:
        gplus, gminus = f, orthogonal_form
        l1 = 2
        while N*p*ell % l1 == 0 or gplus[l1] == 0:
            l1 = next_prime(l1)
        proj_mat = matrix([[gplus[l1],gplus[p]],[gminus[l1],gminus[p]]])
        Lpalist =  (matrix([piHord[l1],piHord[p]]) * proj_mat**-1).list()
        Lpa = Lpalist[0]
        if Lpa.valuation() > prec / 2: # this is quite arbitrary!
            Lpa = Lpalist[1]
        Lpa = Lpa / f[n]
    fwrite("ell = %s"%ell, outfile)
    fwrite("######### FINISHED COMPUTATION ###########", outfile)
    fwrite("Lp = %s"%Lpa, outfile)
    fwrite("##########################################", outfile)
    return Lpa, ell