def _sympysage_integral(self): """ EXAMPLES:: sage: from sympy import Symbol, Integral sage: sx = Symbol('x') sage: assert integral(x, x, hold=True)._sympy_() == Integral(sx, sx) sage: assert integral(x, x, hold=True) == Integral(sx, sx)._sage_() sage: assert integral(x, x, 0, 1, hold=True)._sympy_() == Integral(sx, (sx,0,1)) sage: assert integral(x, x, 0, 1, hold=True) == Integral(sx, (sx,0,1))._sage_() """ from sage.misc.functional import integral f, limits = self.function._sage_(), list(self.limits) for limit in limits: if len(limit) == 1: x = limit[0] f = integral(f, x._sage_(), hold=True) elif len(limit) == 2: x, b = limit f = integral(f, x._sage_(), b._sage_(), hold=True) else: x, a, b = limit f = integral(f, (x._sage_(), a._sage_(), b._sage_()), hold=True) return f