def _plot_2d(self, cmap='winter', vmin=None, vmax=None): points = [(m, l, [i,j]) for i, m in enumerate(self._mu2) for j, l in enumerate(self._lambda)] result = self._parallel_eval(points) value_min = vmin if vmin is not None else min(r[2] for r in result) value_max = vmax if vmax is not None else max(r[2] for r in result) delta_mu2 = [(self._mu2[i] - self._mu2[i-1])/2.0 for i in range(1, len(self._mu2))] delta_lambda = [(self._lambda[i] - self._lambda[i-1])/2.0 for i in range(1, len(self._lambda))] from sage.plot.colors import get_cmap cmap = get_cmap(cmap) def tile(i, j, value): m = self._mu2[i] if i == 0: dm = (delta_mu2[0], delta_mu2[0]) elif i == len(delta_mu2): dm = (delta_mu2[-1], delta_mu2[-1]) else: dm = (delta_mu2[i-1], delta_mu2[i]) l = self._lambda[j] if j == 0: dl = (delta_lambda[0], delta_lambda[0]) elif j == len(delta_lambda): dl = (delta_lambda[-1], delta_lambda[-1]) else: dl = (delta_lambda[j-1], delta_lambda[j]) norm_value = (value - value_min) / (value_max - value_min) print value, norm_value c = cmap(norm_value)[:3] v0 = (l-dl[0], m-dm[0]) v1 = (l+dl[1], m-dm[0]) v2 = (l+dl[1], m+dm[1]) v3 = (l-dl[0], m+dm[1]) return polygon2d([v0, v1, v2, v3], rgbcolor=c, fill=True) g = Graphics() g.axes_labels([r'$\lambda$', r'$\mu^2$']) g._set_extra_kwds({ 'title': self.title, 'axes_labels': [r'$\lambda$', r'$\mu^2$'], 'title_pos': (0.5, 1.1), }) for i, j, value in result: g = tile(i, j, value) + g return g
def _render_on_subplot(self, subplot): """ TESTS: A somewhat random plot, but fun to look at:: sage: x,y = var('x,y') sage: density_plot(x^2-y^3+10*sin(x*y), (x, -4, 4), (y, -4, 4),plot_points=121,cmap='hsv') """ options = self.options() cmap = get_cmap(options['cmap']) x0,x1 = float(self.xrange[0]), float(self.xrange[1]) y0,y1 = float(self.yrange[0]), float(self.yrange[1]) subplot.imshow(self.xy_data_array, origin='lower', cmap=cmap, extent=(x0,x1,y0,y1), interpolation=options['interpolation'])
def _render_on_subplot(self, subplot): """ TESTS: A somewhat random plot, but fun to look at:: sage: x,y = var('x,y') sage: contour_plot(x^2-y^3+10*sin(x*y), (x, -4, 4), (y, -4, 4),plot_points=121,cmap='hsv') """ from sage.rings.integer import Integer options = self.options() fill = options['fill'] contours = options['contours'] if options.has_key('cmap'): cmap = get_cmap(options['cmap']) elif fill or contours is None: cmap = get_cmap('gray') else: if isinstance(contours, (int, Integer)): cmap = get_cmap([(i,i,i) for i in xsrange(0,1,1/contours)]) else: l = Integer(len(contours)) cmap = get_cmap([(i,i,i) for i in xsrange(0,1,1/l)]) x0,x1 = float(self.xrange[0]), float(self.xrange[1]) y0,y1 = float(self.yrange[0]), float(self.yrange[1]) if isinstance(contours, (int, Integer)): contours = int(contours) CSF=None if fill: if contours is None: CSF=subplot.contourf(self.xy_data_array, cmap=cmap, extent=(x0,x1,y0,y1), label=options['legend_label']) else: CSF=subplot.contourf(self.xy_data_array, contours, cmap=cmap, extent=(x0,x1,y0,y1),extend='both', label=options['legend_label']) linewidths = options.get('linewidths',None) if isinstance(linewidths, (int, Integer)): linewidths = int(linewidths) elif isinstance(linewidths, (list, tuple)): linewidths = tuple(int(x) for x in linewidths) linestyles = options.get('linestyles',None) if contours is None: CS = subplot.contour(self.xy_data_array, cmap=cmap, extent=(x0,x1,y0,y1), linewidths=linewidths, linestyles=linestyles, label=options['legend_label']) else: CS = subplot.contour(self.xy_data_array, contours, cmap=cmap, extent=(x0,x1,y0,y1), linewidths=linewidths, linestyles=linestyles, label=options['legend_label']) if options.get('labels', False): label_options = options['label_options'] label_options['fontsize'] = int(label_options['fontsize']) if fill and label_options is None: label_options['inline']=False subplot.clabel(CS, **label_options) if options.get('colorbar', False): colorbar_options = options['colorbar_options'] from matplotlib import colorbar cax,kwds=colorbar.make_axes_gridspec(subplot,**colorbar_options) if CSF is None: cb=colorbar.Colorbar(cax,CS, **kwds) else: cb=colorbar.Colorbar(cax,CSF, **kwds) cb.add_lines(CS)
def _render_on_subplot(self, subplot): """ TESTS:: sage: matrix_plot(random_matrix(RDF, 50), cmap='jet') Graphics object consisting of 1 graphics primitive """ options = self.options() cmap = get_cmap(options.pop('cmap',None)) origin=options['origin'] norm=options['norm'] if norm=='value': import matplotlib norm=matplotlib.colors.NoNorm() if options['subdivisions']: subdiv_options=options['subdivision_options'] if isinstance(subdiv_options['boundaries'], (list, tuple)): rowsub,colsub=subdiv_options['boundaries'] else: rowsub=subdiv_options['boundaries'] colsub=subdiv_options['boundaries'] if isinstance(subdiv_options['style'], (list, tuple)): rowstyle,colstyle=subdiv_options['style'] else: rowstyle=subdiv_options['style'] colstyle=subdiv_options['style'] if rowstyle is None: rowstyle=dict() if colstyle is None: colstyle=dict() # Make line objects for subdivisions from .line import line2d lim=self.get_minmax_data() # First draw horizontal lines representing row subdivisions for y in rowsub: l=line2d([(lim['xmin'],y-0.5), (lim['xmax'],y-0.5)], **rowstyle)[0] l._render_on_subplot(subplot) for x in colsub: l=line2d([(x-0.5, lim['ymin']), (x-0.5, lim['ymax'])], **colstyle)[0] l._render_on_subplot(subplot) if hasattr(self.xy_data_array, 'tocoo'): # Sparse matrix -- use spy opts=options.copy() for opt in ['vmin', 'vmax', 'norm', 'origin','subdivisions','subdivision_options', 'colorbar','colorbar_options']: del opts[opt] if origin=='lower': subplot.spy(self.xy_data_array.tocsr()[::-1], **opts) else: subplot.spy(self.xy_data_array, **opts) else: opts = dict(cmap=cmap, interpolation='nearest', aspect='equal', norm=norm, vmin=options['vmin'], vmax=options['vmax'], origin=origin,zorder=options.get('zorder',None)) image = subplot.imshow(self.xy_data_array, **opts) if options.get('colorbar', False): colorbar_options = options['colorbar_options'] from matplotlib import colorbar cax,kwds=colorbar.make_axes_gridspec(subplot,**colorbar_options) colorbar.Colorbar(cax, image, **kwds) if origin == 'upper': subplot.xaxis.tick_top() elif origin == 'lower': subplot.xaxis.tick_bottom() subplot.xaxis.set_ticks_position('both') #only tick marks, not tick labels
def _render_on_subplot(self, subplot): """ TESTS:: sage: matrix_plot(random_matrix(RDF, 50), cmap='jet') Graphics object consisting of 1 graphics primitive """ options = self.options() cmap = get_cmap(options.pop('cmap',None)) origin=options['origin'] norm=options['norm'] if norm=='value': import matplotlib norm=matplotlib.colors.NoNorm() if options['subdivisions']: subdiv_options=options['subdivision_options'] if isinstance(subdiv_options['boundaries'], (list, tuple)): rowsub,colsub=subdiv_options['boundaries'] else: rowsub=subdiv_options['boundaries'] colsub=subdiv_options['boundaries'] if isinstance(subdiv_options['style'], (list, tuple)): rowstyle,colstyle=subdiv_options['style'] else: rowstyle=subdiv_options['style'] colstyle=subdiv_options['style'] if rowstyle is None: rowstyle=dict() if colstyle is None: colstyle=dict() # Make line objects for subdivisions from line import line2d lim=self.get_minmax_data() # First draw horizontal lines representing row subdivisions for y in rowsub: l=line2d([(lim['xmin'],y-0.5), (lim['xmax'],y-0.5)], **rowstyle)[0] l._render_on_subplot(subplot) for x in colsub: l=line2d([(x-0.5, lim['ymin']), (x-0.5, lim['ymax'])], **colstyle)[0] l._render_on_subplot(subplot) if hasattr(self.xy_data_array, 'tocoo'): # Sparse matrix -- use spy opts=options.copy() for opt in ['vmin', 'vmax', 'norm', 'origin','subdivisions','subdivision_options', 'colorbar','colorbar_options']: del opts[opt] if origin=='lower': subplot.spy(self.xy_data_array.tocsr()[::-1], **opts) else: subplot.spy(self.xy_data_array, **opts) else: opts = dict(cmap=cmap, interpolation='nearest', aspect='equal', norm=norm, vmin=options['vmin'], vmax=options['vmax'], origin=origin,zorder=options.get('zorder',None)) image=subplot.imshow(self.xy_data_array, **opts) if options.get('colorbar', False): colorbar_options = options['colorbar_options'] from matplotlib import colorbar cax,kwds=colorbar.make_axes_gridspec(subplot,**colorbar_options) cb=colorbar.Colorbar(cax,image, **kwds) if origin=='upper': subplot.xaxis.tick_top() elif origin=='lower': subplot.xaxis.tick_bottom() subplot.xaxis.set_ticks_position('both') #only tick marks, not tick labels
def _render_on_subplot(self, subplot): """ TESTS: A somewhat random plot, but fun to look at:: sage: x,y = var('x,y') sage: contour_plot(x^2-y^3+10*sin(x*y), (x, -4, 4), (y, -4, 4),plot_points=121,cmap='hsv') """ from sage.rings.integer import Integer options = self.options() fill = options['fill'] contours = options['contours'] if 'cmap' in options: cmap = get_cmap(options['cmap']) elif fill or contours is None: cmap = get_cmap('gray') else: if isinstance(contours, (int, Integer)): cmap = get_cmap([(i, i, i) for i in xsrange(0, 1, 1 / contours)]) else: l = Integer(len(contours)) cmap = get_cmap([(i, i, i) for i in xsrange(0, 1, 1 / l)]) x0, x1 = float(self.xrange[0]), float(self.xrange[1]) y0, y1 = float(self.yrange[0]), float(self.yrange[1]) if isinstance(contours, (int, Integer)): contours = int(contours) CSF = None if fill: if contours is None: CSF = subplot.contourf(self.xy_data_array, cmap=cmap, extent=(x0, x1, y0, y1), label=options['legend_label']) else: CSF = subplot.contourf(self.xy_data_array, contours, cmap=cmap, extent=(x0, x1, y0, y1), extend='both', label=options['legend_label']) linewidths = options.get('linewidths', None) if isinstance(linewidths, (int, Integer)): linewidths = int(linewidths) elif isinstance(linewidths, (list, tuple)): linewidths = tuple(int(x) for x in linewidths) from sage.plot.misc import get_matplotlib_linestyle linestyles = options.get('linestyles', None) if isinstance(linestyles, (list, tuple)): linestyles = [ get_matplotlib_linestyle(l, 'long') for l in linestyles ] else: linestyles = get_matplotlib_linestyle(linestyles, 'long') if contours is None: CS = subplot.contour(self.xy_data_array, cmap=cmap, extent=(x0, x1, y0, y1), linewidths=linewidths, linestyles=linestyles, label=options['legend_label']) else: CS = subplot.contour(self.xy_data_array, contours, cmap=cmap, extent=(x0, x1, y0, y1), linewidths=linewidths, linestyles=linestyles, label=options['legend_label']) if options.get('labels', False): label_options = options['label_options'] label_options['fontsize'] = int(label_options['fontsize']) if fill and label_options is None: label_options['inline'] = False subplot.clabel(CS, **label_options) if options.get('colorbar', False): colorbar_options = options['colorbar_options'] from matplotlib import colorbar cax, kwds = colorbar.make_axes_gridspec(subplot, **colorbar_options) if CSF is None: cb = colorbar.Colorbar(cax, CS, **kwds) else: cb = colorbar.Colorbar(cax, CSF, **kwds) cb.add_lines(CS)
def _render_on_subplot(self, subplot): """ TESTS:: sage: matrix_plot(random_matrix(RDF, 50), cmap='jet') """ options = self.options() cmap = get_cmap(options.pop("cmap", None)) origin = options["origin"] norm = options["norm"] if norm == "value": import matplotlib norm = matplotlib.colors.NoNorm() if options["subdivisions"]: subdiv_options = options["subdivision_options"] if isinstance(subdiv_options["boundaries"], (list, tuple)): rowsub, colsub = subdiv_options["boundaries"] else: rowsub = subdiv_options["boundaries"] colsub = subdiv_options["boundaries"] if isinstance(subdiv_options["style"], (list, tuple)): rowstyle, colstyle = subdiv_options["style"] else: rowstyle = subdiv_options["style"] colstyle = subdiv_options["style"] if rowstyle is None: rowstyle = dict() if colstyle is None: colstyle = dict() # Make line objects for subdivisions from line import line2d lim = self.get_minmax_data() # First draw horizontal lines representing row subdivisions for y in rowsub: l = line2d([(lim["xmin"], y - 0.5), (lim["xmax"], y - 0.5)], **rowstyle)[0] l._render_on_subplot(subplot) for x in colsub: l = line2d([(x - 0.5, lim["ymin"]), (x - 0.5, lim["ymax"])], **colstyle)[0] l._render_on_subplot(subplot) if hasattr(self.xy_data_array, "tocoo"): # Sparse matrix -- use spy opts = options.copy() for opt in [ "vmin", "vmax", "norm", "origin", "subdivisions", "subdivision_options", "colorbar", "colorbar_options", ]: del opts[opt] if origin == "lower": subplot.spy(self.xy_data_array.tocsr()[::-1], **opts) else: subplot.spy(self.xy_data_array, **opts) else: opts = dict( cmap=cmap, interpolation="nearest", aspect="equal", norm=norm, vmin=options["vmin"], vmax=options["vmax"], origin=origin, zorder=options.get("zorder", None), ) image = subplot.imshow(self.xy_data_array, **opts) if options.get("colorbar", False): colorbar_options = options["colorbar_options"] from matplotlib import colorbar cax, kwds = colorbar.make_axes_gridspec(subplot, **colorbar_options) cb = colorbar.Colorbar(cax, image, **kwds) if origin == "upper": subplot.xaxis.tick_top() elif origin == "lower": subplot.xaxis.tick_bottom() subplot.xaxis.set_ticks_position("both") # only tick marks, not tick labels